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ABSTRACT

This investigation is concerned with minimum weight designs of arch

structures. Using the finite element method, the arch is modeled by

contiguous bar-beam elements. Element stiffness coefficients in terms of

local degrees of freedom are related to system degrees of freedom through

local to global coordinate transformations. After coordinate transformations,

element stiffness coefficients are assembled into FEM stiffness equations for

the arch structure. An objective function for weight minimization, with

constraints on failure, arch geometry, and section dimensions, is minimized

by the DOT optimization code. Results are presented for a number of cases.
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I. INTRODUCTION

The arch has been employed in the fabrication of engineering

structures for over five thousand years. Its suitability to compressive load

design made it especially favored when masonry, not steel, was the principle

building material. (Due to masonry being stronger in compression than in

tension.) Its elegant shape, more natural and graceful than the straight lines

and perpendiculars of traditional man-made structures, made it fashionable

among architects and civil engineers. Its influence can be cited in diverse

cultures, among which include the Egyptians, Mesopotamians, Romans, (see

Figure 1.1), Byzantines, French, Chinese, and English.

A number of investigations on the optimization of arches have been

conducted over the years. In 1976, Farshad [Ref. 1], using the calculus of

variations, derived optimality conditions in the form of nonlinear partial dif-

ferential equations for hinged-hinged arches. An augmented functional,

comprised of the total potential energy of the system and the objective

function, appended to the system via Lagrange multipliers, when minimized

with respect to state variables and with respect to design variables yield the

system equilibrium equations, and the optimality conditions respectively.

Three objective functions were imposed:

- optimal thrust

- minimum length of arch

-1-



- minimum volume

The arch span and the loading are specified. The nonlinear system of

optimality equations were presented but not solved.

In 1980, Rozvany et al [Ref. 2] considered the problem of arch

optimization using the Prager-Shield criteria. Here, the arch was in fact a

funicular frame with beams rigidly interconnected to one another. Only

statically determinate systems were investigated. The first "arch" with a

specified span consisted of two inclined beams with a concentrated load along

the center of symmetry. The second investigation dealt with an "arch"

consisting of three beam segments, the center segment being horizontal, and

inclined members from the hinged supports. Two concentrated loads were

applied at the intersections of the inclined members with the horizontal

center member. For the single load "arch" it was found that the optimal
"arch" develops either bending only or axial forces only in the entire structure

depending on the range of the 4L/d ratio, where L is the span of the structure

and d is the constant depth of the cross-section. For 4L/d greater than 8, the

optimal structure has a height half of the span, and there is only axial force

throughout the structure. For 41/d less than 8, the optimal structure is a

straight horizontal beam (i.e., the height is zero), and only bending

throughout the structure. The width of the beam segments for the optimal
"arch" varies linearly from the hinged support to the center line.
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Figure 1.1: Pont du Gard of the Nimes Aqueduct
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In a 1980 paper, Lipson et al [Ref. 3] investigated the optimal design of

arches using the complex method. Both the arch shape and the cross

sectional dimensions are the design variables for the minimum weight

structure. Only symmetric arches with constant depth and constant width

were considered. The section was taken as a thin walled rectangular tube

with vertical and horizontal wall thicknesses as design variables. The arch

was approximated with equal length straight beam sections. Thus, each

beam segment had three design variables, the two wall thicknesses and the

left end vertical location. In addition, the uniform height and uniform width

of the rectangular tube were design variables. Side constraints in the form of

upper and lower bounds were placed on all of the design variables. A

modified version of the complex method of Box was used as the scheme to

obtain a "fully-stressed" optimum design. The shape of the arch was taken as

a parabola. The optimization algorithm provided the minimum weight

parabolic arch for a uniform load over a specified span. It was shown that a

parabolic arch with a rise 0.342 times the span length is the optimal

parabolic shape for the case of a uniform horizontal load. Deviations within

10% from this rise have negligible effect on the optimal weight. It was

further shown that parabolic steel arches will fail due to their own weight at

span lengths greater than 1,543 ft. For relatively high arches, the maximum

axial thrust, which occurs at the supports, approaches half of the total

uniform load. The results of a parametric study of optimal steel arches are

presented.

In a 1988 paper, Ang et al [Ref. 4] investigated the optimal shape of an

arch under bending and axial compression. The cross-section of the arch was

rectangular with specified constant depth and variable width. With the
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centroidal axis of the arch given by the summation of products of cubic spline

functions with linear coefficients, the arch axis is permitted to take on any

smooth shape. The linear coefficients in these products are design variables

to be determined in the optimization process. The authors considered arches

under a uniformly distributed horizontal load with three types of boundaries,

- simply supported-simply supported

- clamped-clamped

- clamped-simply supported

A yield failure constraint was imposed. A new technique for smoothing the

objective function is presented. It was shown that the optimal shape of the

arch is a parabola with a rise equal to 0.433 time the span of the arch. No

other results are presented. It should be noted that the results of [Ref. 3] and

[Ref. 4], with regard to the ratio of rise to span for an optimal parabolic arch,

do not agree.

In the study of arches, it is necessary to determine how they will be

defined. One prevalent school of thought defines an arch as a curved

structure, which when supported at both ends and loaded vertically develops

horizontal reactions. This is apparently intended to eliminate thick walled

curved beams and straight beams which develop (virtually) no horizontal

reactions when loaded laterally.

Others define an arch as a curved beam whose cross-sectional

dimensions are small relative to its radius of curvature. Hence, the

centroidal and neutral axes are assumed to coincide. How the structure is

loaded and supported becomes secondary. This description was chosen to

-5-



facilit-te the development of a finite element code capable of generating

horizontal and vertical displacements and slopes for an arbitrarily loaded

arch. Without the thin depth assumption, complications arise in the

calculations of the slopes and displacements because the arch will no longer

behave as predicted by the beam equilibrium equation:

(EIv")"= py(s) (1.1)

and the bar equilibrium equation:

(AEuT'= -P(s) (1.2)

where E represents Young's Modulus, I the cross-sectional moment of inertia,

A the cross-sectional area, v the lateral displacement, u the axial

displacement, p. the axial loading, and p. the lateral loading.

Once the displacements and slopes are determined, the local stresses

can be calculated throughout the member using appropriate stress-

displacement relations. Thus able to determine the stress distribution, the

arch may be designed to achieve minimum volume (and hence weight) while

maintaining the developed stresses below some predefined maximum

allowable stress value.

The aim of this study is to "optimize" a linear, elastic, isotropic, and

homogeneous arch under a variety of loadings and end conditions. Although

these limitations are not physically essential, they were necessary to make

the investigation tenable given the time constraints of thesis research

activity. Optimization in this investigation will refer to the variance of the

cross-sectional geometry to achieve a more uniform stress distribution

throughout the member. This results in less material used and a more

efficient structure. VMA Engineering's Design Optimization Tools [Ref. 5] is

-6-



used to perform the optimization subject to prescribed constraints on the

design variables as well as stress limitations. The objective function to be

minimized is the total volume of the arch while maintaining stresses below

the yield strength of the arch material. Though a rather simplistic model, it

forms a foundation upon which further research into more complex

geometries and conditions may be developed.

-7-



II. PROBLEM FORMUIATION

Perhaps the most common optimization in structural mechanics is the

minimization of an element's weight, subject to a specified loading. Such will

be the case for this investigation. To make the investigation tenable, the

problem needed to be narrowed down in its scope. The assumptions and

approximations made in this study are:

- The arch is approximated by a series of straight bar/beam elements

which behave according to the beam equation (1.1) and bar equation

(1.2). (See Figure 2.1)

- The arch material is isotropic, homogeneous, and linearly elastic.

- The arch's cross-sectional area will always be of a solid rectangular

geometry.

- The arch has a constant circular radius of curvature.

- The arch "fails" if its internal stresses exceed the yield strength, SY.

It should be noted that the third and fourth assumptions are not inherent to

the general optimization problem but rather are imposed to limit the scope of

this initial investigation. Follow on investigations will relax these

restrictions.

--
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and NEL is the total number 

of elements. 
(See Figure 

2.1b)
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With an objective function defined, the next step in the optimization

process is to impose any necessary (design) constraints upon the system. The

constraints must be provided to represent the assumptions contained in the

modeling equations. They should be utilized to avoid undesirable behavior

such as buckling and yielding. They may also be used to apply any

limitations on behavior as desired by the designer. The constraints employed

in this investigation follow.

B. THE STRENGTH CONSTRAINT

This study assumes a linearly elastic arch. Therefore, the applied

loading must not cause the structure to exceed the elastic limit of the

material from which it is made. Hence, a design constraint which will

-10-



prevent this mode of "failure by yielding" must be imposed. To fulfll this

constraint, the internal stresses developed must remain below the yield

strength of the material. Defining the maximum stress developed in the ith

element of the arch to be a i and the yield strength of the arch material as Sy,

this constraint becomes

ai<y

or in dimensionless form:

i/SY - 1 <5 0 (2.2)

C. GEOMETRIC CONSTRAINTS

To use the beam and bar equations, limits must be imposed upon the

geometric dimensions of the structure. It is compulsory that the depth and

width be of at least an order of magnitude smaller than the radius of

curvature for the beam and bar equations to be applicable. Hence,

N R/1O

or in dimensionless form:

10hi/R1 - 1 < 0 (2.3)

Similarly, as the width increases, the arch approaches the geometry of

a shell. To maintain the geometry of an arch, an imposition upon the width

dimension is also necessary. To avoid shell behavior, a third constraint is

imposed

bi- 3h.

or in dimensionless form:

bi/3h . -1:5 0 (2.4)

-11-



D. SIDE CONSTRAINTS

Finally, side constraints must be assigned to the dimensions of the

design variables. For the sake of simplicity, this investigation will only take

up the variation of the cross-sectional width dimension bi. The side

constraints must ensure real solutions are obtained, i.e., the arch is a

physical object and therefore h, and bi cannot be less than a realistic finite

value. The side constraints chosen to reflect these limitations include:

0.03 in. < hi  (2.5)

0.03 in. bi  (2.6)

Other constraints could have also been considered. Global buckling

and local crippling are to name but two. However, the cases to be studied do

not warrant such a thorough delineation. Therefore, the design and side con-

straints have been limited to those cited.

E. OPTIMIZAION SOFTWARE

With a multitude of preprogrammed optimization routines available,

the Design Optimization 7bols (DOT) software was chosen. Its selection was

based upon availability, ease of use, and reputation. DOT is a FORTRAN 77

optimization software package available from VMA Engineering. To perform

a variety of optimization tasks, DOT uses:

- The Modified Method of Feasible Directions,

- Broydon-Fletcher-Goldfarb-Shanno (BFGS) Variable Metric Method,

- Polynomial Interpolation with bounds, and

- Sequential Linear Programming (SLP)

-12-



A user provided "main" program is used to input the variables required by

DOT. DOT in turn calls a user provided subroutine which defines the

objective function, design constraints, and design variable side constraints.

DOT iteratively evaluates the objective function, refining the design variables

until the optimal solution is obtained.

The parameters used to calculate the objective function and constraints

must be known before any optimization can occur. The variables from

equations (2.1) through (2.6) include:

- The number of elements used, NEL.

- The arch radius of curvature, R.

- The height of the ith element, h.-

- The length of the ith element, Ii .

- The width of the ith element, bi.

- The yield strength of the material from which the arch is made, SY.

- The stress at the ith node, oi.

Of these terms, the number of elements is the choice of the designer. The

arch radius of curvature and height are constant throughout the span of the

arch and are defined by the problem. For simplicity, the length of each

element is made uniform such that:

l. = OR/(NEL) (2.7)

where e represents the subtended arc of the arch. The yield strength is

determined by the material used to build the arch and the width is the design

variable to be determined by DOT.

- 13-



The stress distribution is not so readily available. However, using the

beam and bar equations, a finite element scheme can be developed to

determine the arch's displacements and slopes due to a given loading.

Knowing how the displacements and slopes change throughout the arch, the

stress at a given point can be calculated and the optimization performed.

- 14-



HI. STRESS ANALYSIS

The objective of this optimization is to minimize the total weight

(volume) of a load bearing arch subject to specified constraints. The strength

constraint requires that the stress at any point does not exceed the yield

strength of the arch material. To avoid violating this constraint, the value of

the stresses at any point must be known. With this requirement, the stress

development is pursued.

The normal stress at any point in the arch is composed of normal

stresses due to bending (bending stress) and normal stresses due to the axial

forces (axial stress) acting upon the individual elements. Figure (3.1) depicts

these force interactions. The total normal stress is the algebraic sum of these

components.

an = C%+ (3.1)

The arch can also develop shear stresses due to shear forces. Due to the

geometric constraint defined by equation (2.3), the shear stresses turn out to

be insignificant when compared to the normal stresses. Consequently, the

shear stresses are ignored.'

To calculate the normal stress components, we must first determine

how the elements behave. For a simple straight beam element, the maximum

normal stress due to bending occurs at the outer fibers and is given by

% = MC/I

1. See Appendix A for a justification of the orniusion of the shear stresses.

- 15-



or in terms of the beam equation:

S= (EIv"k'I

which reduces to:

= Ecv" (3.2)

where c is the distance from the neutral axis to the outer fiber of the beam,

that is c=h/2. See Figure (3.1b).y

C(C)
FF

(a)

Figum 3.: Normal Strseme due to Bending and Axial Form

In the same manner, the normal stresses due to axial behavior can be

determined. The uniform normal stress due to axial forces, F, acting upon a

bar can be defined by.

ca = F/A

or in terms of the bar equation,

a, = (AEu'YA

- 16-



which reduces to:

a. = Eu' (3.3)

See Figure (3. 1c).

Substituting equations (3.2) and (3.3) into equation (3.1) yields the

linear equation

= Ecv"+ Eu'

or simply

4t = E(cv" + u) (3.4)

where v" and u' are to be determined from the solution of equations (1.1) and

(1.2).

From this development, we see the normal stress is a function of

Young's Modulus, the height of the beam, the first derivative of the axial

displacement, and the second derivative of the lateral displacement. Using

the Galerkin finite element method, approximate values of u' and v" can be

determined. With these values, the stress distribution can be calculated

using Equation (3.4) and the optimization may then be conducted.

-17-



IV. FINITE ELEMENT ANALYSIS

In order to determine the stresses developed for a given loading, the

values of u' and v" must be determined. These derivatives can be found by

solving the beam and bar equations using the Galerkin finite element method

(FEM). The Galerkin FEM is capable of directly solving systems of linear

differential equations while preserving their symmetry.

A. THE BEAM EQUATION DEVELOPMENT

The beam equation (1.1) is a fourth order linear differential equation

requiring C' continuity. Therefore, a family of cubic shape functions are

necessary to maintain function and slope continuity. With this in mind, the

Galerkin FEM is performed on the beam equation. A finite element method

is an approximation method which transforms the differential equation of a

continuous system into a system of linear algebraic equations. The method

begins by a discretization, that is a partition, of the continuous domain into a

segmented domain of NEL elements. Thereafter, a three step process takes

place.

The first step is to form an approximate solution v,

v V = QTv (4.1)

- 18-



where v is the exact solution in continuous space of the beam equation, i is

the approximate solution in discrete space, QT is the transpose of the column

vector of cubic shape functions which have the Kronecker delta property, and

y is the vector of coefficients of lateral displacements and slopes.

The second step is to form the residual of the approximation where:

R = i(v)- p (4.2)

where £ denotes the system operator, in this case being the beam equation

such that

£(v) = [EI(v)"]"

Substituting the beam equation (1.1) and the equation (4.1) into equation

(4.2) yields:

R = [EI(QTy)"]" - py(s) (4.3)

The third step is to form the Galerkin Equations,

JQ(R)ds = 0 (4.4)

where 0 represents a vector whose values are zero. Substituting equation

(4.3) into equation (4.4) yields:

fD[EI(Q )"]ds - f Py(S) ds = 0 (4.5)

Performing two successive integrations by parts upon equation (4.5) yields:

Q EI(QTy)"]' '- Q'EI(QTy) 6+ JDQ"EI(QTy)ds - DQ Py(s) ds = 0 (4.6)

where B denotes the boundary values of the structure at each end point.

Since the coefficients of the solution vector are constants, equation (4.6)

may be rewritten as:

Q[EI(QT)"]'y 6- Q'EI(QT)"y 6+ JDQ"EI(QT) ds y - DQ py(S) ds = Q (4.7)
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Using shear given by V=EIv"' and moment given by M=EIv", we define the

boundary term load vectors V and M as

V = Q[EI( QT)"]'v (4.8a)

and

M = QT'EI(T)"y B (4.8b)

In addition, we define the system stiffness matrix V as

] B = JDQ"EI(QT)"ds (4.8c)

and the system force vector Fb as,

b = JDQpy(S) ds (4.8d)

and upon substituting equations (4.8) into equation (4.7) we obtain the

system of linear algebraic equations:

V- M + By - Fb = 0 (4.9)

Moving the applied internal excitation and boundary terms to the right-hand

side, such that

IUE_ = F + M- _ V(4.10)

and defining the load vector of internal and external applied loads as

FB=Fb+M-V (4.11)

equation (4.10) simplifies to the linear system:

UB " = FB (4.12)

where the system bending stiffness matrix, VSE is constructed from the union

of the i=1,...,NEL elemental bending stiffness matrices, kbi and the system

bending force vector Fb is formed from the union of the i=1,...,NEL elemental

bending force vectors f b.
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B. THE BAR EQUATION DEVELOPMENT

The FEM application to the bar equation is similar to that previously

conducted with the beam equation. The bar equation, however, is a second

order linear differential equation requiring CO continuity. Hence, only a

family of linear shape functions are necessary to maintain function continuity

in the FEM development.

Again, the basic steps of the Galerkin Method are conducted.

First, the approximate solution a is formed:

u - C = GTu (4.13)

where u is the exact solution of the bar equation, u- is the approximate

solution, GT is the transposed column of linear shape functions with the

Kronecker delta property, and u is the vector of coefficients of axial

displacements.

Second, the residual is formed:

R = C(a) + p (4.14)

where £ pertains to the differential operator of the bar equation, that is,

£(u) = [AE(u)']'

Third, the Galerkin equations are formed:

fDG(R)ds = 0 (4.15)

Substituting equation (4.13) and the bar equation (1.2) into equation (4.14)

yields:

R = [AE(GTu)']' + p1(s) (4.16)

Substituting equation (4.16) into equation (4.15) yields:

fDG[AE(GT)']'ds + JDG pX(s) ds = 0 (4.17)

-21-



Performing a single integration by parts upon equation (4.17) yields:

AEG(GTu" B- JD9'(AE(GTul°)ds + JDGpx(s) = 0 (4.18)

Again, removing the solution vector u of constant coefficients outside of the

integral yields:

AE'G(GT)u 6- JDG'[AE(GTY]ds u + JDGx(S) = 0 (4.19)

Recalling that the axial force F is AEu', we define the boundary term vector

U = AE(T)u 6 (4.20A)

the system stiffness matrix of the bar 1 A

.KA = JDG'(AE(GT))ds (4.20b)

and the force vector associated with internal loading p., as

F= JDGP(S) (4.20c)

We obtain upon substituting equations (4.20) into equation (4.19),

U - IN + FP = 0 (4.21)

Taking all the internal excitation F' terms and boundary load terms U to the

right-hand side of equation (4.21) yields:

ISAfiF~a + U (4.22)

Defining the load vector FA as

FA= Fa + U (4.23)

and substituting equation (4.23) into equation (4.22) yields the linear system:

]SAu = FA (4.24)

where

(4.25)
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that is, the system axial stiffness matrix, KA is constructed from the union of

the elemental axial stiffness matrices, kai, and the system axial force vector

F is formed from the union of the elemental axial force vectors fai.

C. THE ELEMENTAL STIFFNESS MATRIX

In the FEM code, the global (or system) Galerkin FEM equations (4.12)

and (4.24) are actually constructed from element considerations as follows.

First, the arch is divided into NEL straight beam-bar elements as illustrated

in Figure (2.1). The stress analysis program contains a subroutine which

constructs the elemental beam and bar stiffness matrices, that is, the bi

matrices for bending and ka matrices for axial stiffness. The bending and

axial elemental force vectors, f bi and f" ai are also determined within this

subroutine. Figure (4.1) illustrates the degrees of freedom in which these

elemental forces (and displacements) act.
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nod e 2 // 4'0 f"I

node 2

node I n od e 1

Bar Element Beam Element

Figure 4.1: Beam and Bar Element Degrees of Freedom

The (4x4) kbi and (2x2) k i matrices of the form:

k11 k k1 3  k 4

bi ibh bI a kkal
kbI k2 1 kc22 k 23' Ic2  kal il

k3bil kb kb' k~b, 41ka2

33 k~aj k2~ 244

are combined to form a single (6x6) stiffness matrix, ji. This is accomplished

by redefining the beam and bar degrees of freedom in the following manner:

- Redefine the bar local degrees of freedom 1' and 2', which refer to the

axial displacements at each end, as 1' and 4' respectively.
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Redefine the beam local degrees of freedom 1', 2', 3', and 4', which

refer to the lateral displacement and beam slope at each end as 2', 3',

5', and 6' respectively. The redefined degrees of freedom are

illustrated by Figure (4.2)

Place the respective components of the beam matrices 4bi and bar

matrices Vi into the elemental stiffness matrix ki where:

k," 0 0 k 2  0 0
o kibk 0 ~k
0 k. kN 0 k~' k.

k', 0 0 k2 0 0 (4.26)

0 k,,k, 0 k k

0 kJ; "k 0 kk

5,

4,?

16A,

Beam-bar Element

FiSe 4.2: Beam-Bar Element Degrees of Freedom
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Defining the elemental displacements and forces in a similar manner,

the elemental displacement vector becomes:

(6 V)T, ,> (4.27)

where for the ith element:

Z = the axial displacement at node 1

= the lateral displacement at node 1

= the beam slope at node 1

84' = the axial displacement at node 2

= the lateral displacement at node 2

= the beam slope at node 2

and are illustrated in Figure (4.2).

In the same manner, the elemental force vector is redefined as:
(fi)T = <f, f 2 i, f P, f4 i , f5 i, f6 i, > (4.28)

where for the ith element:
f, j, = the axial force at node 1

f2 = the lateral force at node 1
f3 = the moment at node 1

C4 i, = the axial force at node 2

f ,= the lateral force at node 2

f6 = the moment at node 2

also illustrated in Figure (4.2).

With these developments, the elemental system of equations for the

beam-bar element becomes:
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AE1 1  0 0 -AE/1 1j 0 0
81 lo 12EI/1 6EI/11 0 -12EI1/ 6 EI/1' f2'

O 6EI1/2 4EI/11  0 -6EI/1I 2EIi .Z3 fX --

-AE/1 1i 0 0 AE/1 1j 0 0 1,= I
84 f 4l

o -12E1.11 -6EX/12 0 12EI/.Tl -6EI/1 Vj, 6E/1 I61 2EI/11  0 -6EI/1 4E111  8 f6

(4.29)

or simply

= fi' (4.30)

Prior to incorporation into the global matrix, a coordinate transformation

from local to global coordinates is undertaken.

D. COORDINATE TRANSFORMATION

Were all the elements of the same orientation with respect to one

another as it is for a straight beam, a global system of equations could be

directly constructed. For the arch, however, none of the elements share the

same orientation. This necessitates the conversion of all elemental

displacements and forces to a system of global displacements and forces. For

a reference coordinate system, the horizontal and vertical axes of the arch

were chosen. (See Figure 4.3) Defining the angle the ith element makes with

the horizontal axis as c i , and the 900 complement of this angle as j, the

following coordinate relationship between local and global "displEcements"

and "forces" exist,
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= jCOS(az) + &~cos( 1)

=-jcos(Aj3) + &cos(cr 1)
(4.31)

V'= V4 cos(a~) + cos(3 1)

and
fit fi cos(a,) + f2 icos(31)

f = f3 (4.32)

f4" = f4 i cos(CQ~ + fi cos(3 1)

ffit f4i COS(CO~ + fi, COSA~)

f sit = f i

6 5

re..

4

3 , l'
Inode

Figure 4.8: Displacement & Force Coordinate Transformation*
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Defining i as the transformation matrix for the ith element which is

capable of performing the appropriate coordinate transformations from local

elemental coordinates to global system coordinates, the matrix becomes:

cos(a.) cos(Pi) 0 0 0 0

-cos (0.1) cos (a1 ) 0 0 0 0
o 0 1 0 0 0

F i  0 0 0 cos(aj) cos(1P) 0 (4.33)

0 0 0 -cos(P.1 ) cos(a) 0

o 0 0 0 0

and the relation between local and global "displacements" is

cos(a1 ) cos((a) 0 0 0 0
.1-cos(p) cos() 0 0 0 0 8

8o o o o o/
40 o 0 cos (a1) cos (I3 ) 0

5 0 0 0 -cos (P1) cos (a1 ) 0 V
8 ,1ooo i t,

60 0 0 0 0 1 8

(4.34)

A similar relation between local forces f i, and global forces f exists. The

notation of equations (4.31) and (4.32) can now be simplified to

(4.35)

fi, = [ifi (4.36)

where:

(2i)T = <81i, 82i' 83i ' 84i' 55i9 86i>  (4.37)

(fi)T = <f 1 i, f2i , f3i, f4i, fsi f6i> (4.38)
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E. THE ELEMENTAL SYSTEM OF EQUATIONS

Recall from equation (4.30) that ki'8i ' = f i'. Substituting equations

(4.35) and (4.36) into equation (4.30) yields

ki'r i i = U iVfi  (4.39)

Multiplying both sides of equation (4.46) by the inverse of the transformation

matrix, L' yields

T(iti)liai= (Ti)-l1ifi

which simplifies to

(Ei-liT i~i - fi (4.40)

Since L' is an orthogonal matrix, ( i)-1 = ( i)T, and equation (4.41) can be

rewritten as:

(r i)T i,(L i)§i = fi (4.41)

yielding the elemental system of equations transformed to the

horizontal/vertical coordinate system. Now, the elemental stiffness matrices

and force vectors are ready for the construction of the global stiffness matrix

and force vector. The ( i)Ti(I i) term is the elemental stiffness matrix in

terms of the x- and y-coordinates, and is denoted as ki, that is:

S= (g-i)T i,([. i) (4.42)

F. THE GLOBAL SYSTEM OF EQUATIONS

With the elemental system of equations transformed into the global

(horizontal/vertical) coordinate system, the global system of equations can be

formed. The system stiffness matrix 13 is the union of the local transformed

stiffness matrices for each element, thus
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K= uk i  (4.43)

where:

= (V)Tl iC')

and the global (or system) force vector F is obtained by constructing the union

of the transformed local force vectors fi, that is,

F = uf' (4.44)

Then the global system of equations becomes:

U§5 = F (4.45)

Solution of the above system stiffness equations yields the system

"displacements". These horizontal, vertical and rotational degrees of freedom

"displacements" must be transformed back to local axial, lateral and

rotational "displacements" in order to use the stress equations based upon

the beam and bar equations. First the global degrees of freedom 81, 82, ... I n ,

where n=3(NEL+1), are related to the Bi (where i=1,2,...,6) element

horizontal, vertical, and rotational degrees of freedom for each element. The

jth degree of freedom for the ith element is given by

8 = (4.46)

where i=1,2,...,NEL, j=1,2,3, and k=3(i-1)+j. Then the axial, lateral, and

rotational "displacements" for the i th element at node 1 are obtained from

equation (4.31) as

00009~co~c1 + k, cos(j,)

=-.8 Cos(d + W2 cOsi(,)

and likewise for the node 2 end.
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In this manner, the stress at each end of each element can be

determined. Choosing the greater of the two stresses as the governing stress

of that element, the optimization analysis can be conducted for the entire

structure. In this way, the width dimension bi of each element for a

minimized weight structure is obtained.
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V. PROGRAM DESCRIPTION AND CAPABILITIES

Using the previous developments of Chapters II, III, and IV, a

FORTRAN 77 code was written for execution on the VAX 2000 workstation.

The program, named ARCH_OPT.FOR, was constructed to be as fully

interactive with the user as possible to eliminate the need for editing and

recompiling. The applicability of the code is limited by the assumptions made

in Chapter II. (i.e., rectangular cross-section, linearly elastic material, etc.)

As illustrated in Figure (5.1), execution of the program opens and reads an

input file, ARCHIN.DAT, which contains information describing the problem

being investigated. The x-y coordinates of the end points of each element as

well as the element orientation is determined by the subroutine

GEOMETRY. The subroutine OPTIMIZATION_TOOL contains the

parameter OPTDCS, the optimization decision. With OPTDCS=I, DOT is

called and the weight optimum structure is determined using the provided

width dimension as the starting point of the optimi_3zation process. The stress

constraint is adhered to based upon the stresses calculated by the FEM

analysis contained in the subroutine ARCH_STRESS. If no optimization is

desired, i.e., OPTDCS=0, and the program computes the stress distribution

based upon the input data, treating the initial geometric parameters as the

actual design. With the data thus provided, the problem is solved and an

output file named ARCH_OUT.DAT is created. The output fie contains the

problem parameters, the optimized design variables (width dimensions), and

the value of the resulting objective function, that is, the minimum volume.
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ARCH-OPT

GEOMETRY

*OPTIMIZATIONOL
Non-Optimized _TO Optimized

Solution Solution

ARCH..STRESS YeDesptign?

* No

* EVAL

ARCH-ESS

Figure 5.1: ARCK-OPT Pni~ram Structure

To better understand the program's capabilities, the data fields

contained in ARCHINDAT need to be discussed. The file is an unformatted

set of twenty-five numbers separated by commaks. This file must be of the

form:
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ANGLE, RADIUS, YOUNG, YIELD, NEL, METHOD, IPRINT,
DV1BG, DV1LO, DV1UP, H, CLAN, FX FY, FM, FA,
OPTDCS, ITERATE, PRCSN, BX1, BY1, BM1, BX2, BY2, BM2

Table 5.1 describes each uf these parameters. For further clarification, Figure

5.2 illustrates how the variables represent the problem and the sign

conventions used.
TABLE 5.1: ARCH_IN.DAT FIELD PARAMETERS

ANGLE A real number from 0 to 180 representing the angle
subtended by the arch (in degrees).

RADIUS A real number representing the length of the arch.
(Dimensions are arbitrary, but they must remain
consistent for all inputs!)

YOUNG A real number representing the Young's Modulus of the
arch material.

YIELD A real number representing the yield strength of the
material used. If a factor of safety is desired, it should
first be accounted for and the resultant design strength
used.

NEL An integer value from 1 to 32 which denotes the number
of elements the user wishes to divide the arch for FEM
evaluation. The program is capable of up to 32 elements.

METHOD An integer from 1 to 2. This is a parameter called by DOT
to allow the user to select which optimization method is to
utilized.

METHOD=I Modified Method of Feasible Directions

METHOD=2 Sequential Linear Programming

NOTE: If the problem is unconstrained, the BFGS
algorithm will be used by default [Ref. 5, p. 2-5]

IPRINT An integer from 0 to 5 used by DOT to control the output
data from the DOT optimization. See Appendix C for the
specific outputs

DV1BG A real number which represents the design variable 1
(width dimension) best guess. It initializes all element
width dimension to the best guess value. This establishes
the optimization starting point.
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DVILO A real number which represents design variable l's lower
limit. (The lower side constraint for the width dimension)

DV1UP A real number which represents design variable l's upper
limit. (The upper side constraint for the width dimension)

H A real number which represents the constant height
(depth) of the arch.

CLAN An integer which represents the number of the node at
which a concentrated load is to be applied. This number
must be from 1 to NEL+1. If no concentrated load is
desired, FX, FY, and FM should be made to equal zero.

FX A real number which represent the magnitude of a
concentrated load in the horizontal direction. FX is
applied at node "CLAN".

FY A real number which represent the magnitude of a
concentrated load in the vertical direction. FY is applied
at node "CLAN".

FM A real number which represent the magnitude of a
concentrated moment. FM is applied at node "CLAN".

FA A real number which represents the magnitude of a
uniformly distributed lateral load which spans the entire
length of the arch.

OPTDCS An integer value which represents the optimization

decision' such that:

OPTDCS=I Optimize the dimension of the problem

OPTDCS=2 Do not optimize the problem. This choice
will calculate the stress distribution of the
arch based upon the current problem
dimensions, assuming the width dimension
to be constant and equal to DV1BG

ITERATE An integer value which represents the number of times
the resulting "optimized" variables are to be re-entered
into DOT and the optimization performed again. This
technique was found to be most useful in refining the
optimized solutions.
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PRCSN An integer value from 1 to 2. This parameter allows the

user to solve the FEM linear system of equations in:

PRCSN=1: single precision

PRCSN=2: double precision

B-1 An integer value represent the boundary condition of the
arch's first nodal point such that if the value is 0, The end
is free to move in that degree of freedom. If the value is 1,
the end is fixed in that degree of freedom.
BX1 = horizontal displacement at point A
BY1 = vertical displacement at point A
BM1 = slope of the beam at point A

B-2 An integer value represent the boundary condition of the
arch's last nodal point such that if the value is 0, The end
is free to move in that degree of freedom. If the value is 1,
the end is fixed in that degree of freedom.

BX2 = horizontal displacement at point C
BY2 = vertical displacement at point C
BM2 = slope of the beam at point C

In summary, for a given geometry, loading, and set of boundary

conditions, the program is able to determine the optimum width dimension of

each element throughout the length of the arch. This results in an arch of

minimum volume (weight), capable of supporting the given loading. If

desired, the optimization process can be bypassed completely. This results in

the determination of the arch stress distribution based upon the input

parameters, that is, the stresses associated with the initial design

dimensions. These factors combine to make ARCHOPT a useful tool in

evaluating a variety of arches in engineering applications.
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Fiure 5.2: ARCH-1N.DAT Variable Implementation
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VI. PROGRAM VERIFICATION

To verify the finite element code used in the optimization investigation,

several non-optimum problems of beam and arch structures with known

analytical solutions were solved using the code. The code solution of these

problems also served the purpose of establishing a relation between the

number of elements used in the model and the accuracy of the method. With

a "yardstick" thus provided, "ARCHOPT.FOR"'s capabilities for accurate

modeling of beams and arches was assumed.

The first verification problem was a cantilever beam subjected to a

concentrated end load, illustrated by Figure (6.1). Gere and Timoshenko

[Ref. 6, p. 737] give general formulas for the lateral displacements and beam

slopes for this case, as:

v = px2(3L-x)/6EI (6.la)

v' = Px(21-x)/2EI (6. 1b)

Using the parameters:

P = 1000 lbf h = 3.0 inches
L = 45 inches E = 30 x 106 psi
b = 1.5 inches I = bh3/12

the lateral displacements and beam slopes at the midpoint and free end were

calculated. ARCH_OPT was run for this beam structure using an angle of

45.0 x 106 radians and a radius of 106 inches to approximate the straight 45

inch beam length. For a four element approximation, Table (6.1) compares

the FEM solution to the analytic solution.
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1 ------ --
---- ---- ----

Figure 6.1: Verifioi Problem #1

TABLE 6M: VERIFICATION PROBLEM #1 SUMMARY OF DISPLACEMENTS

Node Fixed End Mid Point Free End
Analytic 6 O.OOOE+OO 9.375E-02 3.OOOE-O1I
FEM 3 O.OOOE+00 9.375E-02 3.OOOE-O1I
% Error f ixed O.OOE+OO O.OOE+OO
Analytic 5' O.OOOE+00 7.500E-03 1.OOOE-02
FEM 5' O.OOOE+00 7.499E-03 9.999E-03
% Error f ixed 1.3 3E-0 2 1.0O0E-0 2
Max % Error

where percent error is defined as,

% Error = 100 x (S8*d - SFEM) S..d (6.2)

The stress corresponding to the same points of interest was calculated

using equation (3.1). Recall

an = MCA
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which in terms of the beam equation at the i th node becomes

(OnFA = (E~v"h/2)/(bih3/12)

or simply

(CFA = 6EIv"ibih 2  (6.3)

From equation (4.1) of the FEM development, v = QTy, hence

,,(QT)

v" (xi) = (QT)'y = (-6/12)y, + (4 /1)yi' (6.4)

Substituting equation (6.4) into equation (6.3) yields

(a) i = (6EI/bih 2)[-6vi/12 + 4vi'/1] (6.5)

where vi and vi' are the lateral dispiacement and slope at xi and are obtained

from p', p', &' and ' of equation (4.31). The stresses of equation (3.1) were

then compared to those calculated by the ARCHOPT using equation (6.5).

The results, summarized in Table (6.2), show a maximum difference of

5.00x10 4% between the exact and FEM solution.

TABLE 6.2: VERIFICATION PROBLEM #1 SUMMARY OF STRESSES

Verification Problem #1
(Stresses)

Node Fixed End Mid Point Free End
Analytic a- 2.OOOE+04 1.000E+04 O.OOOE+00
FEM a 1.999E+04 9.999E+03 9.712E-06
% Error 5.OOE-04 5.OOE-04 N/A
Max % Error

The second verification problem considered was that of a prismatic bar,

fixed at one end and subjected to an axial concentrated load at the free end as

shown in Figure (6.2).
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From the FEM development,

(GTu)I = (u)

which when substituted into equation (6.9) yields the stress at the ith node,

(a)i = Eu/l (6.10)

where u, the axial displacement at xi, is obtained from 8i' and 5' of equation

(4.31). Again using the midpoint and free end as the locations for conducting

the displacement and stress analysis, the FEM code results are compared to

those generated by the analytic solutions. These results are listed in Table

(6.3). They show no difference between the FEM approximation and the

analytic solution.

TABLE 6.3: VERIFICATION PROBLEM #2 SUMMARY OF RESULTS

r Verification Problem #2
(Displacements)

Node Fixed End Mid Point Free End
Analytic 5 0.000E+00 1.667E-04 3.333E-04
FEM 5. O.OOOE+O0 1.667E-04 3.333E-04
% Error fixed O.OOE+O0 O.OOE+O0
Analytic 5' O.OOOE+0O 2.222E+02 2.222E+02
FEM 5'. 0.OOOE+00 2.222E+02 2.222E+02
7 Error fixed 0.OOE+O0 O.OOE+00
Max % Error +

The third verification problem chosen was a cantilever beam with a

concentrated moment at the free end, illustrated by Figure (6.3). Again, from

Gere and Timoshenko [Ref. 6, p.737], the analytic solution for the

displacements and slopes of this particular problem are given by the

equations:

v = Mox 2/2EI (6.11a)

v'= Mox/EI (6.11b)

-43-



?40

*...... =o
Z7 - ---- ---- ----

Figue 6J Verficaion roblm #

U:;in theparamters

Mo =10,00 lb h =3.0 nche

7bese results are compae to Vherfcto Problmem FE prxiain3i ~

U~ing thegparameters

Lod Fixedhe EndOxO idPitFeEn

bE , 1.50+0 inches-0 9.9999E/02

th dipEments an sloe were0 deemne.o0hepitso0nErest

ThsAeut r compar ed o the 4lmn FEM approximations inlyia soln

(6i.4). rtal odsprt.Tee eut r peetdi Tbe(.)

TALE6: EIFCTINPRBEM9 SMAR-F4IP4C-ET



TABLE BA5: VERIFICATION PROBLEM #3 SUMMARY OF STRESSES

Verification Problem #3
(Stresses)_____ ____

Analytic a 4.444E+03 4.444E+03 4.444E+03

FEM or 1 4.444E+03 4.444E+03 4.444E+03
% Error O.OOE+OO O.OOE+OO O.OOE+OO
Max % Error +0

* The final verification problem is based upon an example arch problem

presented by Gere and Timoshenko [Ref. 6, p.616]. They demonstrate how

the unit-load method can be used to calculate the horizontal displacements of

the problem illustrated in Figure (6.4). The following formula was obtained:

8- PR3/2EI (6.12)

y

XR
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For the parameters:

P = 1000 lbf 0 = 90*
R = 45 inches E = 30 x 106 psi
b = 1.5 inches I = bh3/12
h = 3.0 inches

the horizontal deflection is found to be 0.4500 inches. The horizontal

deflection from the 4-element FEM approximation is 0.4470 inches, an error

of 0.66%.

In all of the verification problems, the percent differences between the

values obtained by the approximate FEM method and the exact solutions

were in all cases less than 0.66%. Satisfied that the program was producing

very good data, the investigation to obtain optimum structures was pursued.
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VII CASE STUDIES

Recognizing an arch to be but another structural means of transferring

a load from one point to another, the desire to compare the efficiency of the

optimized arch to that of a traditional structure drove the first two cases

studied. Given the problem of transferring the load at B to A, as illustrated

in Figure (7.1a), numerous structures could be used. For brevity, only the

frame (7.1b) and arch (7.1c) will be studied. Given the parameters:

E = 30x106 psi h = 2 inches
Sy = 52,000 psi a = 32 inches
I = bh3/12 b = 32 inches

only the width dimension for each case will be allowed to vary. In this way, a

volume comparison of each structure, hence a measure of the relative

efficiency of the structure, may be made.

For the non-optimized frame shown in Figure (7. lb), the base (or width)

dimension is considered constant throughout. In order to keep the maximum

stress below the yield strength of the arch material, we have

or

MmaC/I 52,000 psi (7.1)

The maximum moment occurs uniformly along the vertical member of the

frame, hence

[(2000 lbf)(32 inX2 in/2)]/tb(2 in)3/12] 52,000 psi
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or simply

1.846 in. < b (7.2)

The total volume of the frame is

Volume = (32 inX2 inX1.846 in) + (32 inX2 inX1.846 in)

or

Volume = 236.3 ins (7.3)

This volume will be the basis upon which the following optimized

volumes/weights hence efficiencies will be based.

y 2000 lbf 2000 lbf 2000 lbf

a C2

BB B

b

A A A

(a) W1~ (C)

Figure 7.1: Methods of Traiufernng a loaid

A. CASE 1: THE OPTIMIZD FRAME

Given the problem presented in Figure (7.1), an optimized frame of

equal load bearing capabilities was sought. First, the fr-ame was divided into

its vertical and horizontal members. The vertical member is subjected to the

concentrated moment, aP, at C, resulting in a uniform moment and hence
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uniform stress along the member. Consequently the vertical member has a

uniform width dimension of 1.846 inches as previously determined.

The horizontal member is a cantilever beam subjected to a

concentrated end load. Since the moment along BC varies linearly from 0 at

B to aP at C, for a constant maxf=Sy, the width must also vary linearly. Thus

the width varies linearly from 0 inches at the right end to 1.846 inches at C.

The volume for this frame is:

Volume = (32 inX2 inX1.848 in) + (.5X32 inX2 inX1.848 in)

which is:

Volume = 177.4 in3  (7.4)

The volume of the horizontal member, BC, was then optimized using a

4-element, 8-element, and 12-element discretization. Table (7.1) illustrates

the optimized volumes of each of these solutions. The percent difference

between the 4-element and 8-element solution was found to be less than

11.5% and that for the 8-element and 12-element solution to be less than 3%.

In the interest of solving many cases, it was decided to solve all future case

studies with a 12-element discretization, treating the 12-element model as

producing grid independent results.

The optimized results for the horizontal member, given in Table (7.1)

show a total member volume of 64.63 in3 . The volume of the vertical member

remains the same as for the non-optimized structure, hence the total volume

of the optimized frame is

Volume = (32 inX2 inX1.848 in) + 64.63 in 3

= 182.9 in3  (7.5)
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This represents 22.6% less volume, hence 22.6% less weight than the non-

optimized frame.

TABLE 7.1: CASE 1 SUMMARY OF RESULTS

Element Height Length Base Volume Node Stress

linchest lincheal linchesi Icubic in.[ JI)Ol

I 2.OOOE+00 2.667E+00 1.848E+00 9.856E+00 1 5.19E+04
2 2.000EO 2.667E+00 1.695E+00 9.040E+00 2 5.19E+04
3 2.OOOE+00 2.667E+00 1.543E+00 8.229E+00 3 5.18E+04
4 2.000E4O0 2.667E+00 1.389E400 7.408E+00 4 5.18E+04
5 2.OOOE+00 2.687E+00 1.236E+00 8.592E+00 5 5.18E-04
6 2.OOOE+O0 2.667E+00 1.OB2E+00 5.771E+00 6 5.18E+04

7 2.000E+00 2.867E+00 9.313E-01 4.987E+00 7 5.17E+04
a 2.000E+O0 2.667E+00 7.751E-O1 4.134E+00 8 5.15E+04
9 2.OOOE+00 2.687E+00 6.31BE-01 3.369E+00 9 5.16E+04

10 2.OOOE+00 2.667E+00 4.676E--01 2.494E+00 10 5.07E+04
11 2.OOOE+00 2.867E+00 3.19SE-01 1.705E+00 11 5.13E+04
12 2.OOOE+00 2.667E+00 2.000E-01 1.067E+00 12 5.07E+04

12-element X Volume: GSV4-0.164.5 13 4.OOE+04
8-element E Volume: 6.649E+01
4-element E, Volume: 7.385E+01

B. CASE 2: THE OPTIMIZED CANTILEVER ARCH

Given the circumstances and parameters of Figure (7.1), a cantilever

circular arch (Fig. 7.1c) was employed to perform the same function,

transferring the given load at point B to point A. The resulting dimensions

and stresses of the optimization are presented in Table (7.2). These results

illustrate what one would have expected, the width dimension is reduced

until the local stress approaches the yield strength of the material. The total

volume of the arch, 128.3 in 3 is 46.3% less than the non-optimized frame and

29.9% less than the optimized frame. In moving structures where higher

weights mean higher operating costs, savings such as these can become

significant.
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TABLE 7.2: CASE 2 SUMMARY OF RESULTS

Element Height Length Base Volume Node Strm
linchel lncheof linchest lubic in.1 1080

I 2.OOOE+00 4.186E+00 1.864E+O0 1.561E+01 I 5.20E+04
2 2.OOOE+00 4.186E+00 1.842E+00 1.542E+01 2 5.20E+04
s 2.OOOE+o0 4.186E+00 1.795E+00 1.503E+01 s 5.20E+04
4 2.oooE+00 4.188E+oo 1.718E+o0 1.438E+O1 4 5.20E+04
5 2.OOOE+O0 4.186E+00 1.612E+00 1.350E+O1 5 5.19E+04
a 2.OOOE+O0 4.188E+O0 1.477E+00 1.237E+01 6 5.19E+04
7 2.OOOE+0o 4.188E00 1.325E+oo 1.109E+o1 7 5.1,E+04
a 2.OOOE+O0 4.186E+00 1.166E+00 9.762E-00 a 5.16E+04
9 2.OOOE+00 4.188E+00 9.SIBE-01 7.799E+00 9 5.05E+04
10 2.OOOE+O0 4.186E+O0 7.12BE-01 5.966E+00 10 5.19E+04
11 2.OOOE+00 4.186E+00 5.168E-o1 4.327E+00 11 4.85E+04
12 2.OOOE+00 4.186E+00 3.656E-01 3.061E+00 12 3.47E+04

] Volume..iBBi :i 13 1.79E02

C. CASE 3: THE OPTIMIZED CANTILEVER ARCH WITH AXIAL

END LOAD

To appreciate how the stress distribution follows the moment

distribution of the member, the problem of Case 2 was modified keeping the

same parameters as outlined previously, by changing the direction of the load

as shown in Figure (7.2).
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- 2000 lbf

"""'"'.In2in.

Figure 7.2: Case 3 Problem Geometry

For this case, the moment at any point is given by the expression

M = PR(1-sin(9)) (7.6)

as opposed to the moment distribution of Case 2 where the moment along the

length of the arch is

M = PRcos(E) (7.7)

Assuming a unit moment, that is PR=1, then from Figure (7.1), one may see

that the area under Case 3's moment curve is significantly less than the area

under Case 2's moment curve. One would expect this to correspond with the

need for less material due to less applied force (in this case, moment).
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Moment Diagram

0.7

~0.0

0.5 ------8 PR)1 ne ' " i i"

0 .4 .----- ---.- --- --.... -0 .3 ....... -- .. ............ ----- -------

0-4
0 0.2 0.4 0.8 0.8 1 1.2 1:4 1.6

0 (radians)

Figure 7.3: Moment Diagrams of Case 2 and Case 3

The resulting optimized arch of this case has the dimensions outlined

in Table (7.3) and a noticeably smaller volume of 81.39 in 3 than the 128.3 in3

of Case 2. In fact, the reduction in volume is the same as the reduction in

areas of the moment diagrams. This result collaborates with the previous

observation. Hence one may see that the normal stress is predominantly due

to bending and essentially follows the moment distribution of the structure in

question.
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TABLE 7.8: CASE 3 SUMMARY OF RESULTS

Element Height Length Base Volume Node Stres
lnehel eanchst linchest luble in.( hal

1 2.OOOE+00 4.186E+00 1.846E+00 1.545E+01 1 5.20E+04
2 2.OOEt-00 4.lB8E+00 1.687E+00 1.412E+01 2 5.19E+04
3 2.000E+00 4.186E+00 1.435E+00 1.201E+01 3 5.20E+04
4 2.000E+00 4.186E+00 1.196E+00 1.001E+01 4 5.19E+04
5 2.OOOE+00 4.186E+00 9.703E-01 8.123E+00 5 5.19E+04
6 2.000E+00 4.1B6E+00 7.574E-01 6.341E+00 6 6.IQE+04
7 2.OOOE+00 4.188E+00 5.876E-01 4.752E+00 7 5.19E+04
a 2.000E+00 4.1B6E+00 4.009E-01 3.356E+00 8 5.19E+04
9 2.OOOE+00 4.186E+00 2.611E-01 2.1B8E+00 9 5.1SE+04

10 2.000E+00 4.IBBE+00 2.000E-01 1.674E+00 10 4.75E+04
I I 2.OOOE+00 4.18uE+00 2.OOOE-01 1.674E+00 11 2.13E+04
12 2.OOOE+00 I 4.186E+00 2.000E-O1 1.674E400. 12 9.10E+03

Z Volume: i .1i 9&*O .L 13 5.OOE+02

D. CASE 4: THE CANTILEVER ARCH UNDER A DISTRIBUTED

LOAD

This case involves applying a uniformly distributed load acting radially

inward on a cantilever arched segment as pictured in Figure (7.4)

p(s) = 100 lbf/in

• 32 in.

Figwe 7A: Came 4 Problem Geonetry
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where:

E = 30x10 6 psi h = 2 inches
Sy = 52,000 psi R = 32 inches
I = bh3/12 0 = 90 degrees

The results of the optimization contained in Table (7.4) illustrate how

the critical constraints shift from the maximum allowable stress to the

minimum allowable width dimension. Even though the moment in the

structure has diminished and the stress no longer approaches the yield

strength of the material, the geometric constraint prevents the cross-section

from becoming so thin that the bar/beam assumption is no longer valid. The

variation in the width dimensions appears to be almost logarithmic alluding

to the complexities involved with arched segments under uniformly

distributed loads. Had the arch not been optimized and assuming the

maximum width dimension of Table (7.4) to represent the uniform width

dimension of the non-optimum arch, such that

Volume = [(Ro) 2 - (Ri)2 ](8 radiansXbm.)/2 (7.8)

then the total volume of the non-optimum arch would have been

Volume = 209.1 in.3

Hence, the optimized volume of 101.6 in3 is 51% smaller than that of the

non-optimized arch.

- 55-



TABLE 7.4: CASE 4 SUMMARY OF RESULTS

Element Height Length Base Volume Node Stress
lnchest  linchest )inches [ cubic iM| sl

1 2.000E+O0 4.188E+00 2.080E+00 1.741E+01 1 5.21E+04
2 2.OOOE+O0 4.18SE+00 1.930E+00 1.616E+01 2 5.20E+04
3 2.OOOE+O0 4.186E+00 1.782E+00 1.475E+01 3 5.20E+04
4 2.OOOE+O0 4.18E+00 1.552E+00 1.299E+01 4 5.20E+04
5 2.OOOE+O0 4.186E+O0 1.315E+00 1.101E+01 5 5.20E4-04

6 2.000E+O0 4.186E+00 1.087E+00 .933E+00 6 5.20E+04
7 2.OOOE+O0 4.188E+00 8.213E-01 6.878E+O 7 5.20E+04
B 2.000E+O0 4.1B8E+O0 5.912E-01 950E+00 8 5.IE+04
9 2.OOOE+O0 4.186E+00 3.901E-O1 3.266E+00 9 5.16E+04
10 2.OOOE+O0 4.186E+00 2.218E-01 1.857E+00 10 5.16E+04

11 2.OOOE+00 4.186E+00 2.000E-O 1 1.674E+00 11 2.52E+04
12 2.OOOE+00 4.186E+00 2.000E-01 1.674E+O0 12 5.62E+03

1: Volume: A.ISE0: 13 1.0E+03

E. CASE 5: THE SIMPLY SUPPORTED ARCH

This case involved the optimization of a simply supported arch

subjected to a lateral load at the midpoint, illustrated in Figure (7.5). The

arch is a first order statically indeterminate structure subject to the following

parameters:

E = 30x106 psi h = 2 inches
S, = 52,000 psi R = 32 inches
I = bh3/12 8 = 180 degrees
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~ 64 in.

Figure 7.5: Case 5 Problem Geometry

In order to take advantage of symmetry, the problem was divided along the

axis of symmetry with the following boundary conditions imposed on the

symmetry end,

(EIv")' = P/2

EIv'= 0

u=0

The results of the optimization are summarized in Table (7.5). Here

again, the weight savings of the optimized arch of 263.2 in 3 over that of the

non-optimized arch, as defined by equation (7.8), of 628.1 in 3 is approximately

58%.
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TABLE 7J: CASE 6 SUMMARY OF RESULTS

Element Height Length Base Volume Node Strews
lincheel linoheal -hnehest jeuble in.1 )poll_____

1 2.OOOE+O0 4.188E+00 5.130E-01 4.295E+00 1 8.08E4-03
2 2.OOOE+O0 4.188E+00 9.06DE-O1 7.592E+00 2 5.20E+04
3 2.OOOE+OO 4.186E+00 1.1 17E+00 9.351E+00 3 5.O9E+04
4 2.OOOE+O0 4.186E+00 1.479E+00 1.23BE+O 1 4 5.20E+04
5 2.OOOE+O0 4.186E+00 1.106E+00 1.00 1 E+01 5 5.20E+04
6 2.000E4O0 4.1B6E- 30 1.12'7E+OD 9.435E+00 B 5.20E+04
7 2.0005+00 4.188E+00 1.531E+00 1.282E+01 7 4.22E+04
a 2.0005+00 4.186E+00 5.785E-01 4.826E+00 8 4.9 15E+04
9 2.0005+00 4.186E+00 5.935E-01 4.09E+00 9 4.93E+03
10 2.000E+00 4.186E+00 1.348E4.00 1.127E+01 10 5.20E+04
I1I 2.0005+00 4.186E+00 2.208E+00 1.847E+01 11 5.20E4.04
12 12.OOOE+00 4.186E+00 3.124E4-00 2.616E+01 12 5.20E+04

2Volume: I~Ji+2 13 5.20E+04

F. CASE 6: THIE FIXED-FIXKED ARCH

To determine the effect of additional redundancy, the next case

involved the optimization of a fixed-fixed armh subjected to a lateral load at

the midpoint, illustrated in Figure (7.6) and subject to the following

parameters:

E = 30x106 psi h = 2 inches
S= 52,000 psi R =32 inches

I = bh3/12 e = 180 degrees
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Figure 7.6: Case 6 Problem Geometry

The fixed supports add two additional redundant moments at the supports

when compared to the previous simply-supported, simply-supported arch of

case 5. Again taking advantage of symmetry, the problem was divided along

the axis of symmetry with the following boundary conditions imposed on the

symmetry end,

(EIv")" = P/2

EIv'= 0

u=0

The resulting optimized arch has a total volume of 210.3 in 3 as

summarized in Table (7.6). The non-optimum arch has a volume of 533.0 in 3

assuming a constant arch width corresponding to the optimized arch's

maximum width of 2.651 inches. Here, the weight savings of the optimized
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arch over that of the non-optimized arch is approximately 60%. It is also

worth particular note that though the loading and geometry of Cases 5 and 6

are the same, differing only with regards to the boundary conditions imposed,

Case 6 is 20% lighter. This is because a fixed-fixed structure is more

statically indeterminate than the simply supported structure. Hence we see

here that the more redundant structure is the more efficient member. This

illustrates one of the reasons why fixeJ-fixed structures are preferred in

construction.

TABLE 7.6: CASE 6 SUMMARY OF RESULTS

Eeet Height Length Base Volume Node Stress

lincheul linchest linchest ouin l ____t 9

I 2.OOOEe-O 4.188E+00 1.727E+e00 1.446E-OlI I 5.20E+404

2 2.000E4-OO 4.186E+00 9.458E-Ol 7.9lBE+00 2 5.00E4-04

3 2.000E4-00 4.186E+00 2.719E-01 2.276E+00 3 4.62E+04

4 2.0OOE+00O 4.IBBE+0O 6.504E-01 5.445E-00 4 5.20E+i04

5 2.OOOE+0O 4.186E+00 1.091E+00 9.133E+00 5 4.94E+04
6 2.0008+00 4.1888E-00 7.899E-01I 0.613E+-00 6 5.20E4-04

7 2.0008+00 4.188E+00 1.082E+00 8.891E+e00 7 5.IBE404

8 2.00084-00 4.186E+00 7.539E-0O1 6.311 E+00 8 4.21E+-04

9 2.OOOE+00 4.186E+00 2.585P8-01 2.164E4-00 9 5.20E+04

10 2.000E+00 4.186E+00 9.3288-01 7.809E4-00 10 5.13E+04

I1I 2.000E+00 4.186E+00 1.753E400 1.4688+01 11 5.24E+-04

12 2.0008400 4.1888+00 2.85184-00 2.219840O1 12 5.19E+404
2 Volume: SO... 4 ....
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VIII CONCLUSIONS

The conclusions of this study are:

- The stress analysis based upon the bar/beam model yielded good

results with percent deviations from known analytic solutions

ranging between 0.1 and 1.5%. Hence, the bar/beam element model

is a viable technique in the approximation of arch structures.

- The DOT optimization software was able to utilize the bar/beam

modeled stress analysis to efficiently determine weight optimum

arch structures.

- The optimization demonstrates how structures which are more

statically indeterminate (redundant) are likewise more efficient than

identical structures under identical loading.

- The weight optimization of a structure is available and effective for

all types of problem boundary conditions.

It should be noted once again that this is an initial investigation into

the weight optimization of arches. Numerous opportunities exist for the

expansion of the basic assumptions made in this study. This investigation

only considered the optimization of structures of the form:

I = kA
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The general form of this type of optimization is such that

I = kA

where n = 1, 2, or 3 depending upon which cross-sectional dimension(s) is

defined as the design variable. Some of the possibilities for future research

include:

- Allowing only the cross-sectional height dimension, h, vary while

holding all other parameters constant. (n=3)

- Allowing both the height and width dimensions to vary

proportionally, while holding all other parameters constant. (n=2)

- Allowing the radius of curvature of the arch (its center-line shape) to

vary.

- Optimizing the arch using engineering cross-sections such as box

beams, I-beams, circular cross-section, etc.

- Incorporating additional constraints (such as arch maximum height

limitations, buckling constraints, crippling constraints, etc,) in order

to expand the model; thereby enabling the model to solve a greater

variety of problems.

-62-



APPENDIX A

JUSTIFICATION FOR OMITTING SHEAR STRESSES

The shear stress distribution through a beam of rectangular cross-

section has a parabolic distribution along the height of the member. The

maximum shear stress, located at the neutral axis of the beam, is

mx= 1.5V/A (A.1)

where %. is the maximum shear stress, V is the shear force, and A is the

cross-sectional area of the beam. [Ref. 6, p. 229]

The normal stress due to bending is given by the equation

a. = Mc/I (A.2)

where an is the maximum normal stress, M is the bending moment, and I is

the cross-sectional moment of inertia which for this case is bh3/12 where b

and h are the width and height respectively of the cross-section.

Redefining the normal stress in terms of the cross-sectional dimensions

yields

an = M(h/2)/(bh 3/12)

or

n = 6M/hA (A.3)

The ratio of the maximum shear stress to tie normal stress due to

bending, is denoted by r and given by the expression:

r = MXOn (A.4)
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Substituting equations (A.1) and (A.3) into equation (A.4) yields

r = (1.5V/A)/(6M/hA)

or

r = Vh/4M (A.5)

For the cases investigated in this study, the maximum value r can attain is

when the loading is that of a uniformly distributed load, p y. Then, where:

V=pyL (A.6)

M = pyL 2/2 (A.7)

which upon substitution into equation (A.8) yields

r = (pyL)h/4(pyL2/2)

which simplifies to

r = h/2L (A.8)

The use of the beam equation requires the length of the beam to be at a

minimum ten times the height, that is:

L > 10h (A.9)

To maximize the value of r, let L equal 10h, the minimum allowable length.

.Ibstituting this value of L into equation (A.8) yields

r:5 h/2(10h)

or simply

r < 1/20 (A.10)

Hence, the maximum shear stress accounts for less than five percent of the

bending stress developed in the structure. Five percent is high considering

this analysis over-assumed the value of the shear stress by assigning the

maximum shear stress to the entire cross-section of the beam. Moreover, at

the outermost fibers where a n is a maximum, the shear stress is zero.
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Therefore, under the circumstances of this study, the addition of shear

stresses was deemed to be unwarranted.
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APPENDIX B

DOT USERS MANUEL, SECTION 2.1

DOT WITH APPLICATION PROGRAMS

2.1 CALLING STATEMENT
DOT is invoked by the following FORTRAN calling statement

in the user's program:

CALL DOT ( INFO, METHOD, IPRINT, NDV, NCON, X.,

* XL, XU, OBJ, MINMAX, G, RPRM, IPRM, WK, NRWK,

* IMw, NRIWIO
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APPENDIX C

DOT USERS MANUEL, SECTION 2.2

2.2 PARAMETERS IN THE CALLING
STATEMENT

Table 2-1 lists the parameters in the calling statement to DOT.
Where arrays are defined, the required dimension size is given
as the array argument These are minimum dimensions. The
arrays can be dimensioned larger than this to allow for program
expansion.

TABLE 2-1: F.'. jAMETERS IN THE DOT ARGUMENT LIST

PARAMETER DEFINITION

INFO Information parameter. Before calling DOT
the first time, set INFO-0. When control
returns from DOT to the calling program,
INFO will normally have a value of 0 or 1.
If INFO. 0, the optimization is complete (or
terminated with an error message). If
INFO- 1, the user must evaluate the objec-
tive, OBJ, and constraint functions, G(I),
i.i ,NCON, and call DOT again. A third
possibility, INFO. 2, exists also. In this
case, the user must provide gradient in-
formation. This is an advanced feature
and is described in Section 3.2.

METHOD Optimization method to be used.
METHOD - 0 or I means use the modified
method of feasible directions.
METHOD = 2 means use the sequential
linear programming method. If the problem
in unconstrained (NCON - 0) the BFGS al-
gorifthm will be used, regardless of the
value of the parameter METHOD.
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DOT WITH APPLICATION PROGRAMS

IPRINT Print control parameter.
IPRINT a 0 no output.
IPRINT - I internal parameters, initial

information and results.
IPRINT - 2 same plus objective function

and X-vector at each iteration.
IPRINT - 3 same plus G-vector and

critical constraint numbers.
IPRINT - 4 same plus gradients.
IPRINT - 5 same plus search direction.
NOTE: The IPRM Array contains additional
print options.

NDV Number of decision/design variables con-
tained in vector X. NDV is the same as N
in the mathematical problem statement
given in Section 1.7.

NCON Number of constraint values contained in
array G. NCON is the same as M in the
mathematical problem statement given in
Section 1.7. NCON-0 is allowed.

X(NDV) Vector containing the design variables. On
the first call to DOT, this is the user's best
guess of the design. On the final return
from DOT (INFO-0 is returned), the vector
X contains the optimum design.

XL(NDV) Array containing lower bounds on the
design variables, X. If no lower bounds are
imposed on one or more of the design vari-
ables, the corresponding corrponent(s) of
XL must be set to a large negative number,
say -1.OE+15. Be sure It's -1.OE+15 and
not -1.OE-15 (+15, not -15).

2-6 2.2 PARAMETERS IN THE CALLING STATEMENT
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DOT WITH APPLICATION PROGRAMS

XU(NDV) Array containing upper bounds on the
design variables, X. If no upper bounds
are imposed on one or more of the design
variables, the corresponding component(s)
of XU must be set to a large positive num-
ber, say 1.0 E+15.

OBJ Value of the objective function correspond-
ing to the current values of the design var-
ables contained in X. On the first call to
DOT, OBJ need not be defined. DOT will
return a value of INFO-i to indicate that
the user must evaluate OBJ and call DOT
again. Subsequently, any time a value of
INFO-I is returned from DOT, the objec-
tive, OBJ, must be evaluated for the cur-
rent design and DOT must be called again.
OBJ has the same meaning as F(X) in the
mathematical problem statement given in
Section 1.7.

MINMAX Integer parameter specifying whether the
minimum (MINMAX=0,-1) or maximum
(MINMAX-1) of the objective function is to
be found.

G(NCON) Array containing the NCON inequality con-
straint values corresponding to the current
design contained in X. On the first call to
DOT, the constraint values need not be
defined On return from DOT, if INFO-1,
the constraints must be evaluated for the
current X and DOT must be called again.
If NCON-0, array G must be dimensioned
to 1 or larger, but no constraint values
need to be provided.

2.2 PARAMETERS iN THE CALLING STATEMENT 2 -7
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RPRM(20) Array containing the real (floating point
numbers) control parameters. Initialize the
entire array to 0.0 to use all default values.
If you use other values than the defaults,
set the corresponding entries to the
desired values. Section 3.1 describes how
to change the value of these parameters.

IPRM(20) Array containing the integer control
parameters. As with the RPRM array, set
the array to zero to use the default values,
or set the proper entries to the desired
values. Section 3.1 describes how to
change the value of these parameters.

WK(NRWK) User provided work array for real (floating
point) variables. Array WK is used to store
Internal scalar variables and arrays used
by DOT. If the user has not provided
enough storage, DOT will print the ap-
propriate message and terminate the op-
timization.

NRWK Dimensioned size of work array WK.
NRWK should be set quite large, starting at
about 500 for a small problem. If NRWK
has been given too small a value, an error
message will be printed and the optimiza-
tion will be terminated.

IWK(NRIWK) User provided work array for integer (fixed
point) variables. Array IWK is used to store
internal scalar variables and arrays used
by DOT. It the user has not provided
enough storage, DOT will print the ap-
propriate message and terminate the op-
timization.

2 -8 2.2 PARAMETERS IN THE CALLING STATEMENT
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NRIWK Dimensioned size of work array IWK. A
good estimate is 300 for a small problem.
Increase the size of NRIWK as the problem
grows larger. If NRIWK is too small, an
error message will be printed and the op-
timization will be terminated.

Note: The minimum required values of NRWK and NRIWK are

defined as follows (The dimensions may be larger than this):
NJ = ON+NDV

N2 = 2*NDV

N3 = 10*NDV

N4 = MIN (N1,N2)

N5='1

IF NCON = 0, N5=0

NCOLA = MAX (N3,N4)

NGMAX = MIN (NCONNCOLA)

NRB = MIN (N1,NCOLA+1)

IF NCON = 0, NRB = 1

NRWK = NDV*(10+NCOLA) + 5*NCON + NCOLA+ NRB**2 +
MAX(NDV,NCOLA)+2*N5*NRB + 40

IF METHOD > 1, NRWK = NRWK + NGMAX +
NDV*(3+NCOLA)

NRIWK= NDV + NCON + NGMAX + 71

IF METHOD> 1, NRIWK = NRIWK + NGMAX

2.2 PARAMETERS IN THE CALLING STATEMENT 2-9
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A program called DTSTOR is provided with DOT. If you com-
pile and run this program interactively, the minimum required
values of NRW'K and NRIWK ,;re calculated for you. See Ap-
pendix B for more information ,:n this option.

2- 10 2.2 PARAMETERS IN THE CALLING STATEMENT
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APPENDIX D

VERIFICATION AND CASE STUDY OUTPUT
VERIFICATION #1

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle :0.003 Youngs Modulus: 30000000.0
Arch Radius: 1000000.000 Yield Strength: 52000.0
Arch Height: 3.000 No of Elements: 4

B) Derived Constants:
No of System Nodal Points 5
No of Degrees of Freedom . 15
Length per Element .............. 11.2500
Number of Iterations ............ 0

C) Structure Loading:
FX............................ 1000.0000
FY.............................. 0.0000
FM.............................. 0.0000
FA............................. 0.0000

D) Elemental Dimensions and Stress Distribution:
Element Height Base Length Volume

1 3.00000 1.50000 11.24996 50.62481
2 3.00000 1.50000 11.24996 50.62481
3 3.00000 1.50000 11.24996 50.62481
4 3.00000 1.50000 11.24996 50.62481

E) Objective Function:
Total structure Volume: 202.499222

Node Stress
1 19999.90
2 14999.94
3 9999.967
4 4999.973
5 9.7119728E-06

F) Boundary Conditions:
Node X-Displ Y-Displ Slope

1 1 1 1
5 0 0 0

G) Solution Vector:
Node X-Displ Y-Displ Slope

1 0.OOOOOOE+00 0.OOOOOOE+00 0.OOOOOOE+00
2 0.257809E-01 0.112328E-08 -0.437496E-02
3 0.937488E-01 0.409060E-08 -0.749993E-02
4 0.189841E+00 0.828730E-08 -0.937491E-02
5 0.299996E+00 0.130987E-07 -0.999991E-02
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VERIFICATION #2

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 0.003 Youngs Modulus: 30000000.0
Arch Radius: 1000000.000 Yield Strength: 52000.0
Arch Height: 3.000 No of Elements: 4

B) Derived Constants:
No of System Nodal Points... 5
No of Degrees of Freedom .... 15
Length per Element .......... 11.2500
Number of Iterations ........ 0

C) Structure Loading:
FX .............................. 0.0000
FY ............................ 1000.0000
FM .............................. 0.0000
FA .............................. 0.0000

D) Elemental Dimensions and Stress Distribution:
Element Height Base Length Volume

1 3.00000 1.50000 11.24996 50.62481
2 3.00000 1.50000 11.24996 50.62481
3 3.00000 1.50000 11.24996 50.62481
4 3.00000 1.50000 11.24996 50.62481

E) Objective Function:
Total structure Volume: 202.499222

Node Stress
1 222.2231
2 222.2229
3 222.2227
4 222.2224
5 222.2222

F) Boundary Conditions:
Node X-Displ Y-Displ Slope

1 1 1 1
5 0 0 0

G) Solution Vector:
Node X-Displ Y-Displ Slope

1 0.OOOOOOE+00 0.OOOOOOE+00 0.OOOOOOE+00
2 0.112328E-08 0.833330E-04 -0.191236E-09
3 0.409060E-08 0.166666E-03 -0.327832E-09
4 0.828730E-08 0.249999E-03 -0.409790E-09
5 0.130987E-07 0.333332L-03 -0.437110E-09
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VERIFICATION #3

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 0.003 Youngs Modulus: 30000000.0
Arch Radius: 1000000.000 Yield Strength: 52000.0
Arch Height: 3.000 No of Elements: 4

B) Derived Constants:
No of System Nodal Points 5
No of Degrees of Freedom . 15
Length per Element .............. 11.2500

*Number of Iterations ............ 0

C) Structure Loading:
FX.............................. 0.0000
FY.............................. 0.0000
FM........................... 10000.0000
FA.............................. 0.0000

D) Elemental Dimensions and Stress Distribution:
Element Height Base Length Volume

1 3.00000 1.50000 11.24996 50.62481
2 3.00000 1.50000 11.24996 50.62481
3 3.00000 1.50000 11.24996 50.62481
4 3.00000 1.50000 11.24996 50.62481

E) Objective Function:
Total structure Volume: 202.499222

Node Stress
1 4444.438
2 4444.438
3 4444.441
4 4444.441
5 4444.441

F) Boundary Conditions:
Node X-Displ Y-Displ Slope

1 1 1 1
5 0 0 0

G) Solution Vector:
Node X-Displ Y-Displ Slope

1 0.OOOOOOE+00 0.OOOOOOE+00 0.OOOOOOE+00
2 -0.624994E-02 -0.273194E-09 0.111110E-02
3 -0.249998E-01 -0.109277E-08 0.222221E-02
4 -0.562495E-01 -0.245874E-08 0.333332E-02
5 -0.999991E-01 -0.437110E-08 0.444442E-02
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VERIFICATION #4

OPTIMIZATION SOLUTION
----------------------------------------------------------------

A) Problem Parameters:
Arch Angle : 90.000 Youngs Modulus: 30000000.0
Arch Radius: 45.000 Yield Strength: 52000.0
Arch Height: 3.000 No of Elements: 4

B) Derived Constants:
No of System Nodal Points 
No of Degrees of Freedom . 15
Length per Element .............. 17.5581
Number of Iterations ............ 0

C) Structure Loading:
FX.............................. 0.0000
FY............................ 1000.0000
FM.............................. 0.0000
FA.............................. 0.0000

D) Elemental Dimensions and Stress Distribution:
Element Height Base Length Volume

1 3.00000 1.50000 17.55813 79.01159
2 3.00000 1.50000 17.55813 79.01159
3 3.00000 1.50000 17.55813 79.01159
4 3.00000 1.50000 17.55813 79.01159

E) Objective Function:
Total structure Volume: 316.046356

Node Stress
1 20217.61
2 18601.18
3 14266.01
4 7777.182
5 43.39704

F) Boundary Conditions:
Node X-Displ Y-Displ Slope

1 1 1 1
5 0 0 0

G) Solution Vector:
Node X-Dis3pl Y-Displ Slope

1 0.OOCOOOE+00 0.OOOOOOE+00 0.OOOOOOE+00
2 -0.654617E-01 0.131512E-01 0.750656E-02
3 -0.223502E+00 0.118880E+00 0.138705E-01
4 -0.381543E+00 0.355536E+00 0.181227E-01
5 -0.447005E+00 0.684770E+00 0.196159E-01
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OPTIMIZATION #1

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle :0.002 Youngs Modulus: 30000000.0
Arch Radius: 1000000.000 Yield Strength: 52000.0
Arch Height: 2.000 No of Elements: 4

B) Derived Constants:
No of System Nodal Points 5
No of Degrees of Freedom . 15
Length per Element .............. 8.0000
Number of Iterations ............ 0

C) Structure Loading:
FX............................ 2000.0000
FY.............................. 0.0000
FM.............................. 0.0000
FA.............................. 0.0000

D) Elemental Dimensions and Stress Distribution:
Element Height Base Length Volume

1 2.00000 1.84550 8.00000 29.52806
2 2.00000 1.38407 8.00000 22.14510
3 2.00000 0.92261 8.00000 14.76169
4 2.00000 0.46154 8.00000 7.38456

E) Objective Function:
Total structure Volume: 73.819420

Node Stress
1 52018.20
2 52020.44
3 52026.59
4 52000.27
5 9.4704286E-05

F) Boundary Conditions:
Node X-Displ Displ Slope

1 1 1 1
5 0 0 0

G) Solution Vector:
Node X-Displ Y-Displ Slope

1 0.OOOOOOE+00 0.OOOOOOE+00 0.OOOOOOE+00
2 0.508622E-01 0.221694E-08 -0.121376E-01
3 0.197286E+00 0.860890E-08 -0.236977E-01
4 0.433113E+00 0.189046E-07 -0.341030E-01
5 0.742914E+00 0.324212E-07 -0.410363E-01
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OPTIMIZATION #1

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 0.002 Youngs Modulus: 30000000.0
Arch Radius: 1000000.000 Yield Strength: 52000.0
Arch Feight: 2.000 No of Elements: 8

B) Derived Constants:
No of System Nodal Points... 9
No of Degrees of Freedom .... 27
Length per Element .......... 4.0000
Number of Iterations ........ 1

C) Structure Loading:
FX ............................ 2000.0000
FY .............................. 0.0000
FM ............................... 0.0000
FA .............................. 0.0000

D) Elemental Dimensions and Stress Distribution:
Element Height Base Length Volume

1 2.00000 1.84548 4.00000 14.76385
2 2.00000 1.61572 4.00000 12.92572
3 2.00000 1.38417 4.00000 11.07339
4 2.00000 1.15351 4.00000 9.22805
5 2.00000 0.92224 4.00000 7.37795
6 2.00000 0.69289 4.00000 5.54310
7 2.00000 0.46127 4.00000 3.69015
8 2.00000 0.23665 4.00000 1.89324

E) Objectiv- Function:
Total structure Volume: 66.495445

Node Stress
1 52015.55
2 51986.30
3 52013.96
4 52013.29
5 52045.58
6 51955.51
7 52029.16
8 50706.71
9 0.2237021

F) Boundary Conditions:
Node X-Displ Y-Displ Slope

1 1 1 1
9 0 0 0

G) Solution Vector:
Node X-Displ Y-Displ Slope

1 0.OOOOOOE+00 0.OOOOOOE+00 0.OOOOOOE+00
2 0.132929E-01 0.577893E-09 -0.650196E-02
3 0.525036E-01 0.228824E-08 -0.129384E-01
4 0.117357E+00 0.511886E-08 -0.192957E-01
5 0.207485E+00 0.905344E-08 -0.255373E-01
6 0.322357E+00 0.140683E-07 -0.316093E-01
7 0.461109E+00 0.20z5OE-07 -0.373821E-01
8 0.622199E+00 0.271538E-07 -0.425851E-01
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9 0.801554E+00 0.349690E-07 -0.459655E-01
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OPTIMIZATION #i

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 0.002 Youngs Modulus: 30000000.0
Arch Radius: 1000000.000 Yield Strength: 52000.0
Arch Height: 2.000 No of Elements: 12

B) Derived Constants:
No of System Nodal Points... 13
No of Degrees of Freedom .... 39
Length per Element .......... 2.6667
Number of Iterations ........ 4

C) Structure Loading:
FX ............................ 2000.0000
FY .............................. 0.0000
FM .............................. 0.0000
FA .............................. 0.0000

D) Elemental Dimensions and Stress Distribution:
Element Height Base Length Volume

1 2.00000 1.84829 2.66667 9.85756
2 2.00000 1.69537 2.66667 9.04196
3 2.00000 1.54275 2.66667 8.22798
4 2.00000 1.38887 2.66667 7.40732
5 2.00000 1.23566 2.66667 6.59016
6 2.00000 1.08215 2.66667 5.77148
7 2.00000 0.93133 2.66667 4.96712
8 2.00000 0.77510 2.66667 4.13389
9 2.00000 0.63162 2.66667 3.36863

10 2.00000 0.46759 2.66667 2.49383
11 2.00000 0.31955 2.66667 1.70426
12 2.00000 0.20000 2.66667 1.06667

E) Objective Function:
Total structure Volume: 64.630867

Node Stress
1 51925.73
2 51892.89
3 51843.36
4 51329.66
5 51784.52
6 51739.70
7 51531.16
8 51598.32
9 50656.20

10 51320.27
11 50069.02
12 39998.66
13 0.6707708

F) Boundary Conditions:
Node X-Displ Y-Displ Slope

1 1 1 1

13 0 0 0

G) Solution Vector:
Node X-Displ Y-Displ Slope
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1 0.OOOOOOE+00 O.OOOOOOE+00 0.OOOOOOE+00
2 0.598324E-02 0.259434E-09 -0.442333E-02
3 0.237427E-01 0.103343E-08 -0.882640E-02
4 0.532194E-01 0.231938E-08 -0.132043E-01
5 0.943462E-01 0.411430E-08 -0.175555E-01
6 0.147043E+00 0.641459E-08 -0.218709E-01
7 0.211205E+00 0.921563E-08 -0.261415E-01
8 0.286684E+00 0.125107E-07 -0.303404E-01
9 0.373299E+00 0.162918E-07 -0.344682E-01

10 0.470718E+00 0.205440E-07 -0.384082E-01
11 0.578546E+00 0.252490E-07 -0.422098E-01
12 0.696051E+00 0.303731E-07 -0.455477E-01
13 0.820672E+00 0.358010E-07 -0.473255E-01
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OPTIMIZATION #2

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90.000 Youngs Modulus: 30000000.0
Arch Radius: 32.000 Yield Strength: 52000.0
Arch Height: 2.000 No of Elements: 12

B) Derived Constants:
No of System Nodal Points... 13
No of Degrees of Freedom .... 39
Length per Element .......... 4.1858
Number of Iterations ........ 1

C) Structure Loadihg:
FX .............................. 0.0000
FY ............................ -2000.0000
FM .............................. 0.0000

FA .............................. 0.0000

D) Elemental Dimensions and Stress Distribution:
Element Height Base Length Volume

1 2.00000 1.86405 4.18580 15.60506
2 2.00000 1.84215 4.18580 15.42178
3 2.00000 1.79464 4.18580 15.02403
4 2.00000 1.71836 4.18580 14.38546
5 2.00000 1.61213 4.18580 13.49611
6 2.00000 1.47665 4.18580 12.36194
7 2.00000 1.32535 4.18580 11.09533
8 2.00000 1.16593 4.18580 9.76072
9 2.00000 0.93161 4.18580 7.79905

10 2.00000 0.71259 4.18580 5.96554
11 2.00000 0.51683 4.18580 4.32666
12 2.00000 0.36557 4.18580 3.06044

E) Objective Function:
Total structure Volume: 128.302124

Node Stress
1 51975.23
2 51991.84
3 52001.67
4 51952.61
5 51914.72
6 51926.68
7 51573.75
8 50482.76
9 51888.91

10 51924.89
11 48451.66
12 34653.70
13 178.9231

F) Boundary Conditions:
Node X-Displ Y-Displ Slope

1 1 1 1
13 0 0 0

G) Solution Vector:
Node X-Displ Y-Displ Slope
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1 0.OOOOOOE+00 0.OOOOOOE+00 0.OOOOOOE+00
2 0.149422E-01 -0.10542!E-02 -0.714707E-02
3 0.589253E-01 -0.987875E-02 -0.142563E-01
4 0.129477E+00 -0.339057E-01 -0.213028E-01
5 0.222644E+00 -0.799319E-01 -0.282739E-01
6 0.333172E+00 -0.153870E+00 -0.351633E-01
7 0.454693E+00 -0.260536E+00 -0.419651E-01
8 0.579860E+00 -0.403368E+00 -0.486117E-01
9 0.700496E+00 -0.58?032E+00 -0.549785E-01

10 0.808353E+00 -0.802894E+00 -0.613227E-01
11 0.895118E+00 -0.105869E+01 -0.673512E-01
12 0.952352E+00 -0.134670E+01 -0.723963E-01
13 0.972583E+00 -0.165575E+01 -0.747875E-01
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OPTIMIZATION #3

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90.000 Youngs Modulus: 30000000.0
Arch Radius: 32.000 Yield Strength: 52000.0
Arch Height: 2.000 No of Elements: 12

B) Derived Constants:
No of System Nodal Points... 13
No of Degrees of Freedom .... 39
Length per Element .......... 4.1858
Number of Iterations ........ 1

C) Structure Loading:
FX ............................ 2000.0000
FY .............................. 0.0000
FM .............................. 0.0000
FA .............................. 0.0000

D) Elemental Dimensions and Stress Distribution:
Element Height Base Length Volume

1 2.00000 1.84614 4.18580 15.45518
2 2.00000 1.68690 4.18580 14.12203
3 2.00000 1.43532 4.18580 12.01594
4 2.00000 1.19577 4.18580 10.01052
5 2.00000 0.97029 4.18580 8.12291
6 2.00000 0.75740 4.18580 6.34069
7 2.00000 0.56761 4.18580 4.75181
8 2.00000 0.40093 4.18580 3.35641
9 2.00000 0.26110 4.18580 2.18585

10 2.00000 0.20000 4.18580 1.67432
11 2.00000 0.20000 4.18580 1.67432
12 2.00000 0.20000 4.18580 1.67432

E) Objective Function:
Total structure Volume: 81.384300

Node Stress
1 52001.90
2 51862.35
3 51955.02
4 51942.95
5 51853.82
6 51974.19
7 51925.02
8 51871.48
9 51649.30

10 41477.37
11 21322.36
12 9098.637
13 4994.856

F) Boundary Conditions:
Node X-Displ Y-Displ Slope

1 1 1 1
13 0 0 0

G) Solution Vector:
Node X-Displ Y-Displ Slope
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1 0.OOOOOOE+00 0.OOOOOOE+00 0.OOOOOOE+00
2 0.144840E-01 -0.944371E-03 -0.677752E-02
3 0.557774E-01 -0.914169E-02 -0.131680E-01
4 0.120917E+00 -0.312207E-01 -0.195029E-01

5 0.206307E+00 -0.732726E-01 -0.257570E-01
6 0.307129E+00 -0.140544E+00 -0.319051E-01
7 0.417585E+00 -0.237250E+00 -0.379512E-01
8 0.531063E+00 -0.366366E+00 -0.438425E-01
9 0.640343E+00 -0.529394E+00 -0.495298E-01

10 0.737912E+00 -0.726163E+00 -0.549162E-01
11 0.813769E+00 -0.948447E+00 -0.570368E-01
12 0.860985E+00 -0.118418E+01 -0.577029E-01
13 0.877143E+00 -0.142556E+01 -0.578414E-01
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OPTIMIZATION #4

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90.000 Youngs Modulus: 30000000.0
Arch Radius: 32.000 Yield Strength: 52000.0
Arch Height: 2.000 No of Elements: 12

B) Derived Constants:
No of System Nodal Points... 13
No of Degrees of Freedom .... 39
Length per Element .......... 4.1858
Number of Iterations ........ 1

C) Structure Loading:
FX .............................. 0.0000
FY .............................. 0.0000
FM .............................. 0.0000
FA ............................ -100.0000

D) Elemental Dimensions and Stress Distribution:
Element Height Base Length Volume

1 2.00000 2.08018 4.18580 17.41440
2 2.00000 1.93027 4.18580 16.15947
3 2.00000 1.76172 4.18580 14.74842
4 2.00000 1.55158 4.18580 12.98917
5 2.00000 1.31450 4.18580 11.00444
6 2.00000 1.06716 4.18580 8.93384
7 2.00000 0.82127 4.18580 6.87536
8 2.00000 0.59123 4.18580 4.94951
9 2.00000 0.39007 4.18580 3.26550

10 2.00000 0.22180 4.18580 1.85686
11 2.00000 0.20000 4.18580 1.67432
12 2.00000 0.20000 4.18580 1.67432

E) Objective Function:
Total structure Volume: 101.545610

Node Stress
1 52103.21
2 52039.99
3 52033.59
4 52017.27
5 52015.93
6 51958.49
7 51950.00
8 51920.60
9 51610.81

10 51626.45
11 25188.80
12 5614.041
13 1096.744

F) Boundary Conditions:
Node X-Displ Y-Displ Slope

1 1 1 1
13 0 0 0

G) Solution Vector:
Node X-Displ Y-Displ Slope
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1 0.OOOOOOE+00 0.000000E+00 0.OOOOOOE+00
2 0.145714E-01 -0.111348E-02 -0.69174&.E-02
3 0.573794E-01 -0.978175E-02 -0.138459E-01
4 0.125999E+00 -0.332242E-01 -0.206572E-01
5 0.216392E+00 -0.779492E-01 -0.273459E-01
6 0.323304E+00 -0.149537E+00 -0.339032E-01
7 0.440430E+00 -0.252410E+00 -0.403032E-01
8 0.560627E+00 -0.389635E+00 -0.465215E-01
9 0.676171E+00 -0.562738E+00 -0.525061E-01

10 0.778995E+00 -0.771440E+00 -0.581423E-01
11 0.861090E+00 -0.101350E+01 -0.633131E-01
12 0.913642E+00 -0.127777E+01 -0.650579E-01
13 0.931478E+00 -0.154990E+01 -0.651839E-01
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OPTIMIZATION #5

OPTIMIZATION SOLUTION
----------------------------------------------------------------

A) Problem Parameters:
Arch Angle : 90.000 Youngs Modulus: 30000000.0
Arch Radius: 32.000 Yield Strength: 52000.0
Arch Height: 2.000 No of Elements: 12

B) Derived'Constants:
No of System Nodal Points... 13
No of Degrees of Freedom .... 39
Length per Element .......... 4.1858
Number of Iterations ........ 1

C) Structure Loading:
FX .............................. 0.0000FY .......................... -8000.0000
FM ........................... 0.0000
FA .............................. 0.0000

D) Elemental Dimensions and Stress Distribution:
Element Height Base Length Volume

1 2.00000 0.51296 4.18580 4.29430
2 2.00000 0.90694 4.18580 7.59253
3 2.00000 1.11658 4.18580 9.34755
4 2.00000 1.47904 4.18580 12.38193
5 2.00000 1.19599 4.18580 10.01239
6 2.00000 1.12703 4.18580 9.43503
7 2.00000 1.53118 4.18580 12.81847
8 2.00000 0.57650 4.18580 4.82624
9 2.00000 0.59349 4.18580 4.96845

10 2.00000 1.34594 4.18580 11.26764
11 2.00000 2.20595 4.18580 18.46734
12 2.00000 3.12364 4.18580 26.14985

E) Objective Function:
Total structure Volume: 131.561722

Node Stress
1 8078.639
2 52000.93
3 50895.98
4 52005.46
5 52048.33
6 52010.10
7 42175.72
8 49131.36
9 4933.140

10 52013.68
11 52043.57
12 52041.75
13 52027.50

F) Boundary Conditions:
Node X-Displ Y-Displ Slope

1 1 1 0
13 1 0 1

G) Solution Vector:
Node X-Displ Y-Displ Slope
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I 0.OOOOOOE+00 O.OOOOOOE+O0 0.208648E-01
2 -0.823069E-01 0.426506E-02 0.173341E-01
3 -0.143411E+00 0.157328E-01 0.118840E-01
4 -0.178618E+00 0.270851E-01 0.554722E-02
5 -0.189389E+00 0.319111E-01 0.244944E-04
6 -0.177714E+00 0.234612E-01 -0.683719E-02
7 -0.146174E+00 -0.494672E-02 -0.132138E-01
8 -0.105000E+00 -0.525035E-01 -0.165616E-01
9 -0.619691E-01 -0.118718E+00 -0.201392E-01

10 -0.273824E-0O1 -0.190906E+00 -0.168476E-01
'I -0.803875E-02 -0.249018E+00 -0.117570E-01

12 -0.764124E-03 -0.286585E+00 -0.606703E-02
13 0.OOOOOOE+00 -0.300012E+00 0.OOOOOOE+00
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OPTIMIZATION #6

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90.000 Youngs Modulus: 30000000.0
Arch Radius: 32.000 Yield Strength: 52000.0
Arch Height: 2.000 No of Elements: 12

B) Derived Constants:
No of System Nodal Points... 13
No of Degrees of Freedom .... 39
Length per Element .......... 4.1858
Number of Iterations ........ 1

C) Structure Loading:
FX ............................. 0.0000
FY ............................ -8000.0000
FM ............................. 0.0000
FA ............................. 0.0000

D) Elemental Dimensions and Stress Distribution:
Element Height Base Length Volume

1 2.00000 1.72707 4.18580 14.45838
2 2.00000 0.94577 4.18580 7.91762
3 2.00000 0.27194 4.18580 2.27661
4 2.00000 0.65040 4.18580 5.44488
5 2.00000 1.09075 4.18580 9.13130
6 2.00000 0.78986 4.18580 6.61236
7 2.00000 1.06223 4.18580 8.89255
8 2.00000 0.75388 4.18580 6.31116
9 2.00000 0.25849 4.18580 2.16400

10 2.00000 0.93275 4.18580 7.80861
11 2.00000 1.75263 4.18580 14.67236
12 2.00000 2.65143 4.18580 22.19675

E) Objective Function:
Total structure Volume: 107.886574

Node Stress
1 51991.36
2 49986.21
3 46231.32
4 51991.33
5 49404.85
6 51991.04
7 51841.79
8 42080.21
9 51997.34

10 51279.07
11 52434.15
12 51908.94
13 51935.26

F) Boundary Conditions:
Node X-Displ Y-Displ Slope

1 1 1 1
13 1 0 1

G) Solution Vector:
Node X-Displ Y-Displ Slope
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1 O.OOOOOOE+O0O .OOOOOOE+00 O.OOOOOOE+OO
2 -0.121854E-01 0.457452E-03 0.527930E-02
3 -0.442765E-01 0.615066E-02 0.947556E-02
4 -0.861533E-01 0.177060E-01 0.907372E-02
5 -0.112986E+00 0.297132E-01 0.435047E-02
6 -0.121058E+00 0.342979E-01 -0.109393E-03
7 -0.110454E+00 0.237526E-01 -0.701848E-02
8 -0.850803E-01 -0.622361E-02 -0.115516E-01
9 -0.537900E-01 -0.547404E-01 -0.155000E-01

10 -0.252856E-01 -0.118485E+00 -0.155501E-01
11 -0.744947E-02 -0.173190E+00 -0.110976E-01
12 -0.654979E-03 -0.209063E+00 -0.580765E-02
13 0.OOOOOOE+00 -0.222069E+00 0.OOOOOOE+00



APPENDIX E

ARCHOPT.FOR SOURCE CODE

PROGRAM ARCH OPTIMIZATION

* ARCH OPTIMIZATION ANALYSIS CODE *

* ALPHA .... TRANSFORMATION ANGLE OF ELEMENT (ANGLE TO X-AXIS)
* ANGLE .... TOTAL ANGLE OF ARCH (IN DEGREES)
* BASE ..... DOT ARRAY CONTAINING THE ELEMENTAL BASE DIMENSIONS
* BASEL .... DOT ARRAY CONTAINING THE ELEMENTAL BASE DIMENSIONS LOWER
* SIDE CONSTRAINT
*BASEU .... DOT ARRAY CONTAINING THE ELEMENTAL BASE DIMENSIONS UPPER
* SIDE CONSTRAINT
* BETA .... TRANSFORMATION ANGLE OF ELEMENT (ANGLE TO Y-AXIS)
* B 1 ...... BOUNDARY TERMS APPLIED AT END "1"
* B_2 ...... BOUNDARY TERMS APPLIED AT END "2"
* CI,..,C5...CONSTANTS RELATED TO ELEMENT STIFFNESS COEFFICIENTS
* CLAN ..... CONCENTRATED LOAD APPLICATION NODE (THE NODE FX,FY,FM ARE
* APPLIED
* COUNT .... COUNTS THE NUMBER OF ITERATIONS COMPLETED
* DOF ...... DEGREE OF FREEDOMS (UNKNOWN DISPLACEMENTS & SLOPES)
* DSN ...... DESIGN VARIABLE FOR EACH ELEMENT
* DVlBG .... DESIGN VARIABLE #i (BASE DIMENSION) INITIAL ESTIMATE
* DVLO .... DESIGN VARIABLE #1 (BASE DIMENSION) LOWER SIDE CONSTRAINT
* DV1UP .... DESIGN VARIABLE #1 (BASE DIMENSION) UPPER SIDE CONSTRAINT
* EK ....... 6X6 ELEMENT STIFFNESS MATRIX IN LOCAL X,Y COORDINATES
* EKPR ..... 6X6 ELEMENT STIFFNESS MATRIX IN ELEMENT LOCAL COORDINATES
* ELEN ..... LENGTH OF ELEMENT
* F ........ FORCE VECTOR OF SYSTEM
* FA ....... CONSTANT DISTRIBUTED LOAD IN X DIRECTION FROM END TO END
* FM ....... CONCENTRATED MOMENT AT FREE END
* FX ....... CONCENTRATED LOAD IN X DIRECTION AT FREE END
* FY ....... CONCENTRATED LOAD IN Y DIRECTION AT FREE END
* G ........ THE ARRAY OF CONSTRAINT FUNCTIONS
* GAMMA .... 6X6 ELEMENT TRANSFORMATION MATRIX
* GK ....... (NDOF)X(NDOF) GLOBAL STIFFNESS MATRIX
* H ........ DEPTH OF ARCH SECTION
* INDSN .... INITIAL (UNIFORM) DESIGN DIMENSION

INFO.....DOT PARAMETER USED TO SIGNAL THAT THE OPT IS COMPLETE
* IPRINT.. .DOT PARAMETER USED SELECT THE DATA OUTPUT FORMAT
* IPRM ..... DOT SELECTABLE INTEGER PARAMETERS
* ITERATE..THE NUMBER OF TIMES DOT IS TO BE RELOADED WITH THE
* PRECEEDING DATA
* IWK ...... DOT INTERNAL WORK SPACE ARRAY
* METHOD.. DOT PARAMETER USED TO DEFINE THE OPTIMIZATION METHOD
* MINMAX... .DOT PARAMETER USED TO MINIMIZE/MAXIMIZE THE PROBLEM
* NCON ..... NUMBER OF DESIGN CONSTRAINTS
* NDOF ..... NUMBER OF DEGREES OF FREEDOM
* NEL ...... NUMBER OF ELEMENTS
* NRIWK .... DOT INTERNAL WORK SPACE ARRAY DIMENSION
* NRWK ..... DOT INTERNAL WORK SPACE ARRAY DIMENSION
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* NSNP ..... NUMBER OF SYSTEM NODAL POINTS
* OBJ ...... THE OBJECTIVE FUNCTION OF THE OPTIMIZATION
* OPTDCS.. .OPTIMIZATION DECISION TO OPTIMIZE THE PROBLEM OR NOT
* P.. .P4..PARAMETER DIMENSION CORRESPONDING TO THE NEL, NSNP, NCON,
* AND NDOF, RESPECTIVELY
* PHI ...... SUBTENDED ELELENT ANGLE (ALSO, PHIANG IN DEGREES)
* PRCSN .... THE PRECISION DESIRED TO SOLVE THE FEM SYSTEM OF EQUATIONS
* RADIUS...ARCH RADIUS

* RPRM ..... DOT SELECTABLE REAL PARAMETERS
SIGMAB..THE ELEMENTAL NORMAL STRESS DUE TO BENDING
SIGMAN..THE ELEMENTAL NORMAL STRESS DUE TO AXIAL FORCES
SIGMAT..THE MAXIMUM TOTAL STRESS IN EACH ELEMENT

* U ........ THE "DISPLACEMENT' VECTOR OF THE SYSTEM OF LINEAR EQUATIONS
* WK ....... DOT INTERNAL WORK AREA
* X ........ GLOBAL HORIZONTAL COORDINATE
* Y ........ GLOBAL VERTICAL COORDINATE
* YIELD .... YIELD STRENGTH OF THE ARCH MATERIAL
* YOUNG .... YOUNG'S MODULUS OF THE ARCH MATERIAL

C .... declare the variables .....................................
INCLUDE 'ARCHCOM.FOR'

C
C .... read the input parameters .................................

OPEN(8, FILE-'ARCH IN.DAT', STATUS-'OLD')
READ(8, *) ANGLE,RADIUS,YOUNG,YIELD,NEL,METHOD,IPRINT,DVBG,

& DVILO,DV1UP,H,CLAN,FX,FY,FM,FA,OPTDCS,ITERATE,PRCSN,
BX1,BY1,BM1,BX2,BY2,BM2,LABEL

C
C .... define constants ..........................................

NCON - 3*NEL
NSNP - NEL + 1
NDOF - 3*NSNP

C
C .... determine the system nodal coord and element orientation..

CALL GEOMETRY (NEL, NSNP,ANGLE, RADIUS,X,Y, ALPHA, BETA, ELEN)
C
C .... define the size of the work arrays for DOT ................

NRWK - 38800
NRIWK - 400

C
C .... optimize the problem ......................................

CALL OPTIMIZATION TOOL
C
C .... compile and format the output .............................

CALL ARCHOUTPUT
C

END

SUBROUTINE GEOMETRY (NEL, NSNP,ANGLE, RADIUS,X,Y,ALPHA, BETA, ELEN)

C I This routine is used by main ARCH OPTIMIZATION to generate I
C I the x-, y-coordinates of each system node, to determine I
C I the orientation of each element, and to calculate the I
C I length of each element. I

C .... declare the variables .....................................
INTEGER NEL,NSNP,P1,P2
PARAMETER (Pl-32,P2-33)
REAL ANGLE,RADIUS,ELEN,X(P2),Y(P2),ALPHA(P) BETA(P1),

& PI,PHI,ANG,YNUM,XDEN

-93-



PARAMETER(PI - 3.141593)
C
C .... determine the geometric constants .........................

PHI - (ANGLE/NEL)*(PI/180.0)
C

X(1) - 0.0
YO') - 0.0

C
DO 100 i-2, NSNP

ANG - (i-I.0)*PHI
X(i) = RADIUS * (1.0 - COS(ANG))
Y(i) = RADIUS * SIN(ANG)
YNUM - (Y(i) - Y(i-1))
XDEN = (X(i) - X(i-1))
ALPHA(i-1) - ATAN2(YNUM,XDEN)
BETA(i-1) - (PI/2.0) - ALPHA(i-1)

100 CONTINUE
C
C .... determine the length of each element ......................

ELEN - SQRT(X(2)**2.0 + Y(2)**2.0)
C

RETURN
END

** ********************************************************************

SUBROUTINE OPTIMIZATIONTOOL
C
C This subroutine directs the program flow optimization decision
C i.e., optimize the problem or not. It also serves to set up &
C execute the DOT optimization software.

C .... declare the variables .....................................
INCLUDE 'ARCHCOM.FOR'
INTEGER i

C
C .... zero out the RPRM and IPRM arrays .........................

DO 100 i-1,20
RPRM(i) - 0.0
IPRM(i) - 0

100 CONTINUE
C
C .... initialize COUNT ..........................................

COUNT - 0
C
C .... refine the constraint tolerence ...........................

RPRM(2) - 0.0001
RPRH(3) - 0.0001

C
C .... turn off DOT's auto scaling ...............................

IPRM(2) - -1
C
C .... increase DOT's default number of iterations ...............

IPRM(3) - 1000
IPRM(8) - 1000

C
C .... increase DOT's number of consecutive convergence criteria.

IPRM(4) - 3
IPRM(9) = 3

C
C .... define MINMAX--1 to minimize the objective function .......

MINMAX - -1
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C
C .... initialize the design variable limits and best guess ......

DO 200 i-1,NEL
BASE (i) - DV1BG

BASEL(i) - DV1LO
BASEU(i) - DVIUP

200 CONTINUE
C
C .... make optimization decision ................................

IF (OPTDCS .NE. 1) THEN
CALL EVAL
RETURN

ENDIF
C
C .... ready to optimize .........................................

INFO - 0

C
300 CALL DOT (INFO,METHOD,IPRINT,NEL,NCON,BASE,BASEL,BASEU,OBJ,

& MINMAX, G, RPRM, IPRM, WK, NRWK, IWK, NRIWK)
C
C .... evaluate the objective function and constraints ...........

IF (INFO .GT. 0) THEN
CALL EVAL
GOTO 300

ENDIF
C
C .... refine the solution vector by reoptimizing ................

IF (COUNT .LT. ITERATE) THEN
INFO - 0
COUNT - COUNT+1
GOTO 300

ENDIF
C

RETURN
END

SUBROUTINE EVAL
C - -- - ------------------------

C This subroutine is used to evaluate the Objective function,
C constraint functions, and side constraints of the optimization
C problem.
C -------- ----------------------------------------------

C .... declare the variables .....................................
INCLUDE 'ARCH COM.FOR'
INTEGER i,j

C
C .... calculate the objective function ..........................

OBJ - 0.0

C
DO 100 i-1,NEL

OBJ - OBJ + BASE(i)*H*ELEN
100 CONTINUE

C
C .... initialize the design constraint vector ...................

DO 200 i-1,NCON
G(i) - 0.0

200 CONTINUE
C
C .... determine the design constraints ..........................

CALL ARCHSTRESS
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C
DO 210 i-1,NEL

IF (SIGMA T(i) .GE. SIGMAT(i+1)) THEN
SIGMA - SIGMA T(i)

ELSE
SIGMA - SIGMAT(i+l)

ENDIF
C

G(i) - (SIGMA/YIELD) - 1.0
210 CONTINUE

C
DO 220 i-l,7EL

j=i+NEL
G(j) - (BASE(i)/(3.0*H)) - 1.0

220 CONTINUE
C

DO 230 i-1,NEL
-i+ (2*NEL)

G(j) - H/(10.0*BASE(i)) - 1.0
230 CONTINUE

C
RETURN
END

SUBROUTINE ARCHSTRESS
C -==--==---= --

C 'his subroutine is used to perform the Finite Element analysis
C of the stresses developed in an arch or beam for a given load-
C ing.

C .... declare the variables .....................................
INCLUDE 'ARCH COM.FOR'
INTEGER IPVT(99)
REAL GK(P4,P4),F(P4)
REAL*8 BK(P4,P4),BF(P4),BU(P4),FAC(9801),WORK(99)

C
C .... form the element and system matrices ......................

CALL FORM (NEL,NDOF,ALPHA,BETA,H,ELEN,YOUNG,BASE,GK)
C
C .... form the Force vector, F ..................................

CALL FORCEVECTOR (NEL,NDOF,ELEN,ALPHA,BETA,FA,F)
C
C .... set the boundary conditiona and loads .....................

CALL BNDARY (NDOF,GK,CLAN,FX,FY,FM,F,BXI,BY1,BMI,BX2,BY2,BM2)
C
C .... solve the system o,& equations .............................

IF (PRCSN .EQ. 2) THEN
C .... change GK and F arrays to double precision ........

CALL UPSCALE (NDOF,GK,F,BK,BF)
C .... solve the system of equations .....................

CALL DL2ARG (NDOF,BK,P4,BF,1,BU,FAC,IPVT,WORK)
C .... change BU array to single presicion ...............

CALL DOWNSCALE (NDOF,BU, U)
ELSE

C .... solve the system of equations .....................
CALL L2ARG (NDOF,GK,P4,F,1,U,FAC,IPVT,WORK)

ENDIF
C
C .... determine the stress distribution .........................
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CALL STRESS(X,Y,ALPHA,BETA,U,NEL,ELEN,YOUNG,H,SIGMAT)

RETURN
END

SUBROUTINE FORM (NEL,NDOF,ALPHA,BETA,H,ELEN,YOUNG,BASE,GK)
C ----- - - - ---- m

C This subroutine is used to construct the global stiffness mat-
C rix for the arch problem.
C - - --- ---

C .... declare the variables .....................................
INTEGER NEL,NDOF,NPOW,IEL,I,J,K,II,JJ,KK,III,JJJ,P1,P2,P4

C
PARAMETER(PI-32, P2-33, P4-99)

C
REAL ELEN,H,BASE(P1),ALPHA(PI),BETA(PI),YOUNG,

& C1,C2,C3,C4,C5,CA,CB,EKPR(6, 6) ,GAM(6, 6) ,EK(P1, 6,6),
GAMMA(Pl,6,6) ,GK(P4,P4),EKGA(6,6),GAEKGA(6,6),
ALPHAIBETAI

C
C .... define the constants Cx ...................................

NPOW - 1
C1 - YOUNG*H/ELEN
C2 - (H/ELEN)**2.0
C3 - (H**2.0)/(2.0*ELEN)
C4 - (H**2.0)/3.0
C5 - C4/2.0

C
C .... initialize the EKPR and GAM arrays ........................

DO 100 II - 1,6
DO 90 JJ- 1,6

EKPR(II,JJ) - 0.U
GAM(II,JJ) - 0.0

90 CONTINUE
100 CONTINUE

C
C .... initialize the EK and GAMMA arrays ........................

DO 130 IEL - 1,NEL
DO 120 I - 1,6

DO 110 J- 1,6
EK(IEL, 1,J) - 0.0

GAMMA(IEL,I,J) - 0.0
110 CONTINUE
120 CONTINUE
130 CONTINUE

C
C .... determine the EKPR matrix .................................

EKPR(1,1) = Cl
EKPR(1,4) = -C1
EKPR(2,2) - Cl*C2
EKPR(2,3) - Cl*C3
EKPR(2,5) - -Cl*C2
EKPR(2,6) - C1*C3
EKPR(3,2) = C1*C3
EKPR(3,3) = C1*C4
EKPR(3,5) - -C1*C3
EKPR(3,6) = C1*C5
EKPR(4,1) = -C1
EKPR(4,4) = C1
EKPR(5,2) -C1*C2
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EKPR (5, 3) - -C1*C3
EKPR (5, 5) - C1*C2
EKPR (5, 6) - -C1*C3
EKPR(6, 2) - C1*C3
EKPR (6, 3) - C1*C5
EKPR (6, 5) - .C1*C3
EKPR (6, 6) - C1*C4

C
C .... initialize the GK array ...................................

DO 150 I - 1, NDOF
DO 140 J - 1, NDOF

GK(I,J) - 0.0
140 CONTINUE
150 CONTINUE

C
C .... determine the GAMMA matrix ................................

DO 170 IEL - 1,NEL
ALPHAI - ALPHA(IEL)
BETAI - BETA(IEL)
CA - COS (ALPAI)
CB - COS(BETAI)
GAMMA(IEL,1,1) - CA
GAMMA(IEL,1,2) - CB
GAMMA(IEL,2,1) - -CB
GAMMA(IEL,2,2) - CA
GAMMA (IEL, 3,3) - 1.0
GAMMA(IEL,4,4) = CA
GAMMA (IEL, 4,5) = CB
GAMMA (IEL, 5, 4) - -CB
GAMMA (IEL, 5, 5) - CA
GAMMA (IEL, 6, 6) - 1.0

170 CONTINUE
C
C .... initialize the EKGA and GAEKGA arrays .....................

DO 270 IEL - 1, NEL
DO 190 III - 1,6

DO 180 JJJ - 1,6
EKGA(III,JJJ) = 0.0

GAEKGA(III,JJJ) - 0.0
180 CONTINUE
190 CONTINUE

C
C .... determine the EKGA array ..................................

DO 220 I - 1,6
DO 215 J - 1,6

DO 210 K - 1,6
EKGA(I,J) - EKGA(I,J) + EKPR(I,K)*GAMMA(IEL,K,J)

210 CONTINUE
215 CONTINUE
220 CONTINUE

C
C .... determine the GAEKGA array ................................

DO 240 I - 1,6
DO 235 J - 1,6

DO 230 K - 1,6
GAEKGA(I,J) - GAEKGA(I,J)

+GAMMA(IEL,K, I) *EKGA(K,J)
230 CONTINUE
235 CONTINUE
240 CONTINUE

C

-98-



C .... copy the GAEKGA array into the EK array ...................
DO 260 I - 1.6

DO 250 J - 1,6
EK(IEL,I,J) - GAEKGA(IJ)

250 CONTINUE
260 CONTINUE
270 CONTINUE

C
C .... construct the GK matrix ...................................

DO 300 IEL - 1, NEL
II - 3*(IEL-1)
DO 290 J - 1, 6

JJ - II + J
DO 280 K - 1, 6

KK - II + K
GK(JJ, KK) - GK (JJ, KK)

+EK (IEL, J, K) * (BASE (IEL) **NPOW)
280 CONTINUE
290 CONTINUE
300 CONTINUE

C
RETURN
END

* ****** ***** *** ******** *********** *** **** **** ******* ***** **** *******

SUBROUTINE FORCE VECTOR (NEL, NDOF, ELEN, ALPHA, BETA, FA, F)
C
C This subroutine is used to construct the force vector for the
C FEM problem specified.
C
C .... declare the variables .....................................

INTEGER NEL,NDOF,i,I1,I2,I3,P1,P4
C

PARAMETER (P1-32, P4-99)
C

REAL ELEN, ALPHA (P1),BETA(PI),FA,F(P4)
C
C .... form the F-vector .........................................

F(l) - (ELEN/2.0) * (-COS(BETA(l)))
F(2) - (ELEN/2.0) * (COS(ALPHA(l)))
F(3) - (ELEN**2.0)/12.0

C
DO 100 i-2,NEL

I1 - (i-1)*3 + 1
12 - (i-1)*3 + 2
13 - (i-l)*3 + 3

C
F(I1) - (ELEN/2.0)*(-COS(BETA(NEL)))

& + (ELEN/2.0)* (-COS(BETA(NEL-I)))
F(12) - (ELEN/2.0)*(COS(ALPHA(NEL)))

& + (ELEN/2.0) * (COS (ALPHA (NEL-1)))
F(13) - 0.0

100 CONTINUE
C

F(NDOF-2) - (ELEN/2.0)*(-COS(BETA(NEL)))
F(NDOF-l) - (ELEN/2.0)*(COS(ALPHA(NEL)))
F(NDOF) - -(ELEN**2.0)/12.0

C
C .... scale the F-vector by FA ..................................

DO 200 i-1,NDOF
F(i) - FA*F(i)
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200 CONTINUE
C

RETURN
END

SUBROUTINE BNDARY (NDOF,GK,CLAN,FX,FY,FM,F,BX1,BY1,BM1,BX2,
& BY2,BM2)

C
C This subroutine is used to impose the boundary conditions upon
C the global stiffness matrix and force vector.
C --- = ----- = -- = - ----

INTEGER NDOF,BX1,BY1,BM1,BX2,BY2,BM2,CLAN,i,N,I1,12,13,P4
PARAMETER (P4-99)
REAL GK(P4,P4),FX,FY,FM,F(P4)

C
C .... invoke the essential boundary conditions ...................

IF (BXl .EQ. 1) THEN
CALL IMPOSEBC (NDOF,GK,1,F)

ENDIF
C

IF (BY1 .EQ. 1) THEN
CALL IMPOSEBC (NDOF,GK,2,F)

ENDIF
C

IF (BM1 .EQ. 1) THEN
CALL IMPOSEBC (NDOF,GK,3,F)

ENDIF
C

IF (BX2 .EQ. 1) THEN
N-NDOF-2
CALL IMPOSEBC (NDOF,GK,N,F)

ENDIF
C

IF (BY2 .EQ. 1) THEN
N-NDOF-i
CALL IMPOSEBC (NDOF,GK,N,F)

ENDIF
C

IF (BM2 .EQ. 1) THEN
CALL IMPOSEBC (NDOFGK,NDOF,F)

ENDIF
C
C .... add the concentrated load to the force vector ............

Ii- (CLAN-1) *3+1
12- (CLAN-i) *3+2
13- (CLAN-i) *3+3

C
F (11)-F (I1) +FX
F (12)-F (12) +FY
F (13)-F (13) +FM

C
RETURN
END

** ********************************************************************

SUBROUTINE IMPOSE BC (NDOF,GK,N,F)
C
C This subroutine is used to do the redundant leg work of impos-
C ing the boundary conditions.
C
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C .... declare the variables .....................................
INTEGER NDOF,N,i,P4
PARAMETER (P4-99)
REAL GK(P4,P4),F(P4)

C
C .... impose the boundary condition on the GK and F arrays ......

DO 100 i-1,NDOF
GK(Ni) - 0.0

100 CONTINUE
GK(N,N) - 1.0

F(N) - 0.0
C

RETURN
END

SUBROUTINE UPSCALE (NDOF, GK, F, BK, BF)
a C

C This subroutine is used to change the stiffness matrix & force
C vector from single precision to double precision in order to
C solve the linear system of equations in double precision.
C - = --- m----------
C .... declare the variables .....................................

INTEGER NDOF,i, j,P4
PARAMETER (P4=99)
REAL GK(P4,P4),F(P4)
REAL*8 BK(P4,P4),BF(P4)

C
C .... generate the doubleprecision compliments of GK and F ......

DO 110 i=,NDOF
DO 100 j=l,NDOF

BK(i,j) - GK(i,j)
100 CONTINUE

BF(i) - F(i)
110 CONTINUE

C
RETURN
END

SUBROUTINE DOWNSCALE (NDOF, BU, U)
C
C This subroutine is used to do down scale the double precision
C solution of the linear system of equations back to single pre-
C cision. DOT could have problems with double precision numbers!
C 

--- =

C .... declare the variables .....................................
INTEGER NDOF,i,P4
PARAMETER (P4-99)
REAL U(P4)
REAL*8 BU(P4)

C
C .... generate the doubleprecision compliments of GK and F ......

DO 100 i-1,NDOF
U(i) - BU(i)

100 CONTINUE
C

RETURN
END
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SUBROUTINE STRESS(X,Y,ALPHA,BETA,U,NEL,ELEN,YOUNG,H,SIGMAT)
C - --- - -- -= - =- - - - - - - -

C This subroutine computes the stress at each nodal point.
C - - -

C . ... .declarations..................................................
INTEGER NEL,NSNP,NDOF, SWITCH,i,I1, 12, 13,14, 15,16,17, 18, 19,
& Pl,P2,P4
PARAMETER (P1-32, P2-33, P4-99)
REAL ELEN,H,X(P2),Y(P2),ALPHA(Pl),BETA(Pl),YOUNG,
&Kl, K2,CAl,CA2,CB1,CB2,v,vl,v2,

C &elxdisp(P2),elydisp(P2),ELEN f(P2),DISPLEN(P2),
& U(P4),SIGMA-N(P4),SIGMA-B(P4,SIGMAT(P4)

C
C .... .determine the constants......................................

Kl-6.0/ (ELEN**2.O)
K(2-2. 0/ (ELEN)
NSNP - (NEL + 1)
NDOF - NSNP*3

C0
C .... determine the bending stresses ..............

DO 100 i-2,NEL
Il- (i-2) *3+1
12- (i-2) *3+2
13- (i-2) *3+3
14- (i-l) *3+1
15- (i-1) *3+2
16-(i-1) *3+3
17-=(i-O) *3+1
1 8- U-0) *3+2
19- Ui-0) *3+3

C
CB1- COS(BETA(i-1))
CAl- COS(ALPHA(i-1))
CB2- COS(BETA(i))
CA2- COS(ALPHA(i))

C
v2 = Kl*(U(14)-U(Il))*CB1

& +Kl*(U(12)-U(I5))*CAl
& +K2*(U(I3)+2.0*U(I6))

C
v1 - Kl*(U(14)-U(I7))*CB2

& +Kl*(U(18)-U(15))*CA2
& -K2*(U(I6)*2.0+U(I9))

C
IF (ABS(vl) .GE. ABS(v2)) THEN

v-vl
ELSE

v-v2
END IF

C
SIGMAB(i) = YOUNG' (H/2.0)*v

C
100 CONTINUE

C
v = Kl*(U(1)-U(4))*COS(BETA(l))

& +K1'(U(5)-U(2))*COS(ALPHA(l))
& -K2*(U(3)*2.0+U(6))

C
SIGMAB(1) - YOUNG*(H/2.0)*v

C
v = Kl1'(U(NDOF-2)-U(NDOF-5) )*COS(BETA(NEL))
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& +Kl* (U(NDOF-4) -U(NDOF-1) ) COS (ALPHA(NEL))
& +K2* (U (NDOF-3) +2. 0*U(NDOF))

C
SIGMAB(NEL+l) - YOUNG*(H/2.0)*v

C
C .... determine the normial stresses...............

SWITCH - 1
C

IF (SWITCH .EQ. 1) THEN
DO 300 i-2,NEL

Il - (NEL-2)*3+1
12 - (NEL-2)*3+2
13 - (NEL-2)*3+3
14 - (NEL-1)*3+1
15 - (NEL-1)*3+2
16 - (NEL-1)*3+3
17 - (NEL-0)*3+1
I8 - (NEL-0)*3+2
19 - (NEL-0)*3+3

C
CAl- COS (ALPHA (NEL-1))
CBl- COS (BETA (NEL-1))
CA2- COS(ALPHA(NEL))
CB2- COS (BETA (NEL))

C
v2 - (U(14)-U(Il))*CAl + (U(15)-U(I2))*CB1
vi - (U(17)-U(I4))*CA2 + (U(18)-U(I5))*CB2

C
IF (ABS(vl) .GE. ABS(v2)) THEN

v-vl
ELSE

v-v2
ENDIF

C
SIGMAN(i) - (YOUNG/ELEN)*v

300 CONTINUE
C

v - (U(4)-U(1))*COS(ALPHA(1)) + (U(5)-U(2))*COS(BETA(l))
SIGMAN(1) - (YOUNG/ELEN)*v

C
v (U(NDOF-2) -U(NDOF-5) ) *CQ5(ALPHA(NEL)) +

(U(NDOF-1) -U(NDOF-4) ) *~CO(BETA(NEL))
SIGMAN(NEL+l) - (YOUNG/ELEN)*v

C
ELSE

Do 350 i-1,NEL+l
SIGMAN(i) - 0.0

350 CONTINUE
ENDI F

C
*C .... determine the total stresses at each node.........

Do 400 i-1,NEL+l
SIGMAT(i) - ABS (SIGMAB(i)) + ABS (SIGMAN(i))

400 CONTINUE-
C

RETURN
END

SUBROUTINE ARCHOUTPUT
C
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C This subroutine formats the final results and output of the
C optimization problem and stores it in a file named ARCH_-OUT.DAT
C-- M - ---- =--

C .... .declare variables..........................................
INCLUDE 'ARCH COM.FOR'
REAL VOLQVLUME

C
C .... open output file and write header..........................

OPEN(9, FILE='ARCH OUT.DAT', STATUS-'UNKNO'N')
C

WRITE(9,100) LABEL
WRITE(9,100) 'OPTIMIZATION SOLUTION'
WRITE(9,105) '----------------------------------

100 --F ---------------
105 FORMAT(/5X,A)

C
C . ... .section "A.................................................

WRITE(9,100) 'A) Problem Parameters:'
WRITE(9,110) 'Arch Angle :', ANGLE, ' Youngs Modulus:',YOUNG
WRITE(9,110) 'Arch Radius:', RADIUS, ' Yield Strength:',YIELD
WRITE(9,115) 'Arch Height:', H, I No of Elements:',NEL

110 FORMAT (8X,A, F12.3, T38,A, F12 .1)
115 FORMAT(8x,A,F12.3,T38,A,I10)

C
C . ... .section "B"................................................

WRITE(9,100) 'B) Derived Constants:'
WRITE(9,120)' No of System Nodal Points ..',NSNP
WRITE(9,120) No of Degrees of Freedom ....NDOF
WRITE(9,125) 'Length per Element ........... ',ELEN

C WRITE(9,125) 'Phi Angle per Element ....... '1,PHIANG
WRITE(9,120) 'Number of Iterations ........ ',ITERATE

120 FORMAT (8X,A, 16)
125 FORMAT(8X,A,F12.4)

C
C . ... .section "C'.................................................

WRITE(9,100) I C) Structure Loading:'
WRITE(9,125) 'FX...........................' ,FX
WRITE(9,125) 'FY...........................' ,FY
WRITE(9,125) 'FM..........................' ,FM
WRITE(9,125) 'FA...........................' ,FA

C
C .... .section "0"......................................

WRITE(9,100) ' D) Elemental Dimensions and Stress Distribution:'
WRITE(9,210) 'Element','Height','Base','Length','VolumeI

C
210 FORMAT(8X,A,T19,A,T34,A,T50,A,T62,A)
220 FORMAT(8X, 14,T17,F1O.5,T32,F1O.5,T48,F8.5,T60,F8.5)

VOLUME - 0.0
C

DO 300 i-1,NEL
VOL - H*ELEN*BASE Ci)
WRITE(9,220) i,H,BASE(i),ELEN,VOL
VOLUME - VOLUME + VOL

300 CONTINUE
C
C . ... .section "E".........................................

NRITE(9,100) 'E) Objective Function:'
WRITE(9,310) 'Total structure Volume:',VOLUME

310 FORMAT(8X,A,F12.6)
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WRITE(9,330) 'Node','Stress'
Do 320 i-1,NSNP

WRITE(9,*) i,SIGMAT(i)
320 CONTINUE
330 FORMAT(8X,A,T19,A)

C
C . ... .sectioni "F"................................................

WRITE(9,100) I F) Boundary Conditions:'
WRITE(9,410) 'Node','X-Displ','Y-Displ','Slope'
WRITE(9,430) 1,BX1,BY1,BM1
WRITE(9,430) NEL+1,BX2,BY2,BM2

C
C .... .section "G .................................................

WRITE(9,100) ' G) Solution Vector:'
WRITE(9,410) 'Node','X-Displ','Y-Displ','Slope'
DO 400 i-1,NSNP

Il=(i-l) *3+1
* 12=(U-1) *3+2

13- Ui-1) *3+3
WRITE (9, 420) i,U(Il) ,U(I2) ,U(I3)

400 CONTINUE
410 FORMAT(T9,A,Tl7,A,T31,A,T46,A)
420 FORMAT(7X,I5,3E14.6)
430 FORMAT (7X, 15, T20, 14, T34, 14, T48, 14)

C
RETURN
END



C ARCHCOMMON
C
C . ... .definitions.. . . . . . . . . . . . . . . . . . . . . . .

C P1..The maximum number of elements
C P2..The maximum number of global nodal points
C P3..The maximum number of design constraints
C P4..The maximum number of deg~rees of freedom
C
C . ... .declare the variables........................................

INTEGER NEL,NCON,NSNP,NDOF,METHOD,MINMAX,INFO,IPRINT,IWK(400),
& NRWK,NRIWKIPR4(20) ,COUNT,OPTDCS,ITERATE,PRCSN,CLAN,
& ~BX1, BYl,EMi, BX2,BY2,BM2 P1, P2, P3,P4

C
PARAMETER (Pl-32,P2-33, P3-96, P4-99)

C
REAL ANGLE,R.ADIUS,ELEN,H,X(P2),Y(P2),ALPHA(P1),BETA(P1),
& YOUNG,YIELD,WK(27000),RPRM(20),OBJ,G(P3),
& DVlBG,DV1LO,DVlUP,BASE(P1) ,BASEL(P1) ,BASEU(P1),
& FA,FX,FY,FM,U(P4),SIGMAT(P4)

C
C .... .make in commxon...............................................

COMMON NEL,NCON,NSNP,NDOF,METHOD,MINMAX, INFO, IPRINT, IWK,
& NRWK, NRIWK, IPRM, COUNT, OPTDCS, ITERATE, PRCSN, CLAN,
& BX1,BY1,BM1,BX2,BY2,B2,
& ANGLE,RADIUS,ELEN,H,X,Y,ALPHA,BETA,YOUNG,YIELD,
& WK,RPRM,OBJ,G,DV1BG,DV1LO,DV1UP,BASE,BASEL, BASEU,
& FA,FX,FY,FM,U,SIGMAT

C
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